×

30 years in: quo vadis generalized uncertainty principle? (English) Zbl 07739891

Summary: According to a number of arguments in quantum gravity, both model-dependent and model-independent, Heisenberg’s uncertainty principle is modified when approaching the Planck scale. This deformation is attributed to the existence of a minimal length. The ensuing models have found entry into the literature under the term generalized uncertainty principle. In this work, we discuss several conceptual shortcomings of the underlying framework and critically review recent developments in the field. In particular, we touch upon the issues of relativistic and field theoretical generalizations, the classical limit and the application to composite systems. Furthermore, we comment on subtleties involving the use of heuristic arguments instead of explicit calculations. Finally, we present an extensive list of constraints on the model parameter \(\beta\), classifying them on the basis of the degree of rigor in their derivation and reconsidering the ones subject to problems associated with composites.
{© 2023 The Author(s). Published by IOP Publishing Ltd}

MSC:

83-XX Relativity and gravitational theory

References:

[1] Amati, D.; Ciafaloni, M.; Veneziano, G., Superstring collisions at Planckian energies, Phys. Lett. B, 197, 81-88 (1987) · doi:10.1016/0370-2693(87)90346-7
[2] Amati, D.; Ciafaloni, M.; Veneziano, G., Can spacetime be probed below the string size?, Phys. Lett. B, 216, 41-47 (1989) · doi:10.1016/0370-2693(89)91366-X
[3] Gross, D. J.; Mende, P. F., String theory beyond the Planck scale, Nucl. Phys. B, 303, 407-54 (1988) · doi:10.1016/0550-3213(88)90390-2
[4] Gross, D. J.; Mende, P. F., The high-energy behavior of string scattering amplitudes, Phys. Lett. B, 197, 129-34 (1987) · doi:10.1016/0370-2693(87)90355-8
[5] Konishi, K.; Paffuti, G.; Provero, P., Minimum physical length and the generalized uncertainty principle in string theory, Phys. Lett. B, 234, 276-84 (1990) · doi:10.1016/0370-2693(90)91927-4
[6] Yoneya, T., On the interpretation of minimal length in string theories, Mod. Phys. Lett. A, 04, 1587-95 (1989) · doi:10.1142/S0217732389001817
[7] Lauscher, O.; Reuter, M., Fractal spacetime structure in asymptotically safe gravity, J. High Energy Phys., JHEP10(2005)050 (2005) · doi:10.1088/1126-6708/2005/10/050
[8] Ferrero, R.; Reuter, M., The spectral geometry of de Sitter space in asymptotic safety, J. High Energy Phys., JHEP08(2022)040 (2022) · Zbl 1522.83066 · doi:10.1007/JHEP08(2022)040
[9] Rovelli, C.; Smolin, L., Discreteness of area and volume in quantum gravity, Nucl. Phys. B, 442, 593-622 (1994) · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-Q
[10] Modesto, L., Fractal structure of loop quantum gravity, Class. Quantum Grav., 26 (2008) · Zbl 1181.83081 · doi:10.1088/0264-9381/26/24/242002
[11] Girelli, F.; Hinterleitner, F.; Major, S. A., Loop quantum gravity phenomenology: linking loops to observational physics, SIGMA, 8, 98 (2012) · Zbl 1270.83003 · doi:10.3842/SIGMA.2012.098
[12] Bronstein, M., Quantentheorie schwacher gravitationsfelder, Phys. Z. Sowjetunion, 9, 140-57 (1936) · Zbl 0014.08801
[13] Mead, C. A., Possible connection between gravitation and fundamental length, Phys. Rev., 135, B849-62 (1964) · Zbl 0126.24201 · doi:10.1103/PhysRev.135.B849
[14] Mead, C. A., Observable consequences of fundamental-length hypotheses, Phys. Rev., 143, 990-1005 (1966) · doi:10.1103/PhysRev.143.990
[15] Garay, L. J., Quantum gravity and minimum length, Int. J. Mod. Phys. A, 10, 145-66 (1994) · doi:10.1142/S0217751X95000085
[16] Ng, Y. J.; van Dam, H., Limit to space-time measurement, Mod. Phys. Lett. A, 09, 335-40 (1994) · doi:10.1142/S0217732394000356
[17] Amelino-Camelia, G., Limits on the measurability of space-time distances in (the semi-classical approximation of) quantum gravity, Mod. Phys. Lett. A, 9, 3415-22 (1996) · doi:10.1142/S0217732394003245
[18] Adler, R. J.; Santiago, D. I., On gravity and the uncertainty principle, Mod. Phys. Lett. A, 14, 1371-81 (1999) · doi:10.1142/S0217732399001462
[19] Bambi, C.; Urban, F. R., Natural extension of the generalised uncertainty principle, Class. Quantum Grav., 25 (2007) · Zbl 1140.83317 · doi:10.1088/0264-9381/25/9/095006
[20] Padmanabhan, T., Limitations on the operational definition of spacetime events and quantum gravity, Class. Quantum Grav., 4, L107-13 (1987) · doi:10.1088/0264-9381/4/4/007
[21] Maggiore, M., A generalized uncertainty principle in quantum gravity, Phys. Lett. B, 304, 65-69 (1993) · doi:10.1016/0370-2693(93)91401-8
[22] Scardigli, F., Generalized uncertainty principle in quantum gravity from micro-Black Hole Gedanken experiment, Phys. Lett. B, 452, 39-44 (1999) · doi:10.1016/S0370-2693(99)00167-7
[23] Calmet, X.; Graesser, M.; Hsu, S. D H., Minimum length from quantum mechanics and classical general relativity, Phys. Rev. Lett., 93 (2004) · doi:10.1103/PhysRevLett.93.211101
[24] Susskind, L.; Lindesay, J., An Introduction to Black Holes, Information and the String Theory Revolution (2004), World Scientific
[25] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. R., The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B, 429, 263-72 (1998) · Zbl 1355.81103 · doi:10.1016/S0370-2693(98)00466-3
[26] Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B, 436, 257-63 (1998) · doi:10.1016/S0370-2693(98)00860-0
[27] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. R., Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D, 59 (1999) · doi:10.1103/PhysRevD.59.086004
[28] Hossenfelder, S., Signatures in the Planck regime, Phys. Lett. B, 575, 85-99 (2003) · Zbl 1029.83501 · doi:10.1016/j.physletb.2003.09.040
[29] Maggiore, M., The algebraic structure of the generalized uncertainty principle, Phys. Lett. B, 319, 83-86 (1993) · doi:10.1016/0370-2693(93)90785-G
[30] Kempf, A.; Mangano, G.; Mann, R. B., Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D, 52, 1108-18 (1994) · doi:10.1103/PhysRevD.52.1108
[31] Bang, J. Y.; Berger, M. S., Quantum mechanics and the generalized uncertainty principle, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.125012
[32] Galan, P.; Marugan, G. A M., Canonical realizations of doubly special relativity, Int. J. Mod. Phys. D, 16, 1133-47 (2007) · Zbl 1200.83006 · doi:10.1142/S0218271807010638
[33] Pedram, P., New approach to nonperturbative quantum mechanics with minimal length uncertainty, Phys. Rev. D, 85 (2011) · doi:10.1103/PhysRevD.85.024016
[34] Pedram, P., A higher order gup with minimal length uncertainty and maximal momentum, Phys. Lett. B, 714, 317-23 (2011) · doi:10.1016/j.physletb.2012.07.005
[35] Tedesco, L., Fine structure constant, domain walls and generalized uncertainty principle in the universe, Int. J. Math. Math. Sci., 2011 (2011) · Zbl 1217.83065 · doi:10.1155/2011/543894
[36] Mignemi, S., Classical and quantum mechanics of the nonrelativistic Snyder model in curved space, Class. Quantum Grav., 29 (2012) · Zbl 1266.83093 · doi:10.1088/0264-9381/29/21/215019
[37] Nozari, K.; Etemadi, A., Minimal length, maximal momentum and Hilbert space representation of quantum mechanics, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.104029
[38] Das, S.; Pramanik, S., Path integral for non-relativistic generalized uncertainty principle corrected Hamiltonian, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.085004
[39] Tkachuk, V. M., Effect of the generalized uncertainty principle on Galilean and Lorentz transformations, Found. Phys., 46, 1666-79 (2013) · Zbl 1367.81091 · doi:10.1007/s10701-016-0036-5
[40] Pramanik, S.; Ghosh, S., GUP-based and Snyder Non-Commutative algebras, relativistic particle models and deformed symmetries: a unified approach, Int. J. Mod. Phys. A, 28 (2013) · Zbl 1277.83067 · doi:10.1142/S0217751X13501315
[41] Balasubramanian, V.; Das, S.; Vagenas, E. C., Generalized Uncertainty Principle and Self-Adjoint Operators, Ann. Phys., NY, 360, 1-18 (2014) · Zbl 1360.81156 · doi:10.1016/j.aop.2015.04.033
[42] Dey, S.; Fring, A.; Hussin, V., A squeezed review on coherent states and nonclassicality for non-Hermitian systems with minimal length, vol 205, pp 209-42 (2018) · Zbl 1398.81117
[43] Bosso, P., Rigorous Hamiltonian and Lagrangian analysis of classical and quantum theories with minimal length, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.126010
[44] Chung, W. S.; Hassanabadi, H., New generalized uncertainty principle from the doubly special relativity, Phys. Lett. B, 785, 127-31 (2018) · Zbl 1398.83005 · doi:10.1016/j.physletb.2018.07.064
[45] Chung, W. S.; Hassanabadi, H., A new higher order GUP: one dimensional quantum system, Eur. Phys. J. C, 79, 213 (2019) · doi:10.1140/epjc/s10052-019-6718-3
[46] Bosso, P., On the quasi-position representation in theories with a minimal length, Class. Quantum Grav., 38 (2020) · Zbl 1481.83043 · doi:10.1088/1361-6382/abe758
[47] Giné, J.; Luciano, G. G., Gravitational effects on the Heisenberg uncertainty principle: a geometric approach, Results Phys., 38 (2022) · doi:10.1016/j.rinp.2022.105594
[48] Bosso, P.; Petruzziello, L.; Wagner, F., The minimal length is physical, Phys. Lett. B, 834 (2022) · Zbl 1512.83021 · doi:10.1016/j.physletb.2022.137415
[49] Fadel, M.; Maggiore, M., Revisiting the algebraic structure of the generalized uncertainty principle, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.106017
[50] Bosso, P2017Generalized uncertainty principle and quantum gravity phenomenologyPhD ThesisLethbridge U
[51] Wagner, F2022Modified uncertainty relations from classical and quantum gravityPhD ThesisUniversity of Szczecin
[52] Herkenhoff Gomes, A., A framework for nonrelativistic isotropic models based on generalized uncertainty principles, J. Phys. A: Math. Theor., 56 (2023) · Zbl 1519.83033 · doi:10.1088/1751-8121/acb517
[53] Kempf, A., Nonpointlike particles in Harmonic oscillators, J. Phys. A: Math. Gen., 30, 2093-102 (1996) · Zbl 0930.58026 · doi:10.1088/0305-4470/30/6/030
[54] Brau, F., Minimal length uncertainty relation and Hydrogen atom, J. Phys. A: Math. Gen., 32, 7691-6 (1999) · Zbl 0991.81047 · doi:10.1088/0305-4470/32/44/308
[55] Chang, L. N.; Minic, D.; Okamura, N.; Takeuchi, T., Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.125027
[56] Akhoury, R.; Yao, Y. P., Minimal length uncertainty relation and the hydrogen spectrum, Phys. Lett. B, 572, 37-42 (2003) · Zbl 1031.81530 · doi:10.1016/j.physletb.2003.07.084
[57] Benczik, S.; Chang, L. N.; Minic, D.; Takeuchi, T., The Hydrogen atom with minimal length, Phys. Rev. A, 72 (2005) · doi:10.1103/PhysRevA.72.012104
[58] Nozari, K.; Azizi, T., Coherent states of harmonic oscillator and generalized uncertainty principle, Int. J. Quant. Inf., 3, 623-32 (2005) · Zbl 1094.83503 · doi:10.1142/S0219749905001468
[59] Nozari, K.; Azizi, T., Some aspects of minimal length quantum mechanics, Gen. Relativ. Gravit., 38, 735-42 (2005) · Zbl 1093.83013 · doi:10.1007/s10714-006-0262-9
[60] Nozari, K.; Mehdipour, S. H., Wave packets propagation in quantum gravity, Gen. Relativ. Gravit., 37, 1995-2001 (2005) · Zbl 1093.83014 · doi:10.1007/s10714-005-0175-z
[61] Fityo, T. V.; Vakarchuk, I. O.; Tkachuk, V. M., One dimensional Coulomb-like problem in deformed space with minimal length, J. Phys. A: Math. Gen., 39, 2143-9 (2006) · Zbl 1084.81044 · doi:10.1088/0305-4470/39/9/010
[62] Brau, F.; Buisseret, F., Minimal Length Uncertainty Relation and gravitational quantum well, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.036002
[63] Quesne, C.; Tkachuk, V. M., Lorentz-covariant deformed algebra with minimal length and application to the 1+1-dimensional Dirac oscillator, J. Phys. A: Math. Gen., 39, 10909-22 (2006) · Zbl 1168.81014 · doi:10.1088/0305-4470/39/34/021
[64] Zhen-Hua, Z.; Yu-Xiao, L.; Xi-Guo, L., Gravitational corrections to energy-levels of a hydrogen atom, Commun. Theor. Phys., 47, 658-62 (2007) · doi:10.1088/0253-6102/47/4/018
[65] Das, S.; Vagenas, E. C., Universality of quantum gravity corrections, Phys. Rev. Lett., 101 (2008) · doi:10.1103/PhysRevLett.101.221301
[66] Sakhawat Hossain, M.; Faruque, S. B., Influence of a generalized uncertainty principle on the energy spectrum of (1+1)-dimensional Dirac equation with linear potential, Phys. Scr., 78 (2008) · Zbl 1147.81303 · doi:10.1088/0031-8949/78/03/035006
[67] Bouaziz, D.; Bawin, M., Singular inverse square potential in arbitrary dimensions with a minimal length: Application to the motion of a dipole in a cosmic string background, Phys. Rev. A, 78 (2010) · doi:10.1103/PhysRevA.78.032110
[68] Ghosh, S.; Mignemi, S., Quantum mechanics in de Sitter space, Int. J. Theor. Phys., 50, 1803-8 (2009) · Zbl 1225.83039 · doi:10.1007/s10773-011-0692-3
[69] Das, S.; Vagenas, E. C., Phenomenological implications of the generalized uncertainty principle, Can. J. Phys., 87, 233-40 (2009) · doi:10.1139/P08-105
[70] Ali, A. F.; Das, S.; Vagenas, E. C., Discreteness of space from the generalized uncertainty principle, Phys. Lett. B, 678, 497-9 (2009) · doi:10.1016/j.physletb.2009.06.061
[71] Nozari, K.; Pedram, P., Minimal length and bouncing particle spectrum, Europhys. Lett., 92 (2010) · doi:10.1209/0295-5075/92/50013
[72] Das, S.; Vagenas, E. C.; Ali, A. F., Discreteness of space from GUP II: relativistic wave equations, Phys. Lett. B, 690, 407-12 (2010) · doi:10.1016/j.physletb.2010.05.052
[73] Bouaziz, D.; Ferkous, N., Hydrogen atom in momentum space with a minimal length, Phys. Rev. A, 82 (2010) · doi:10.1103/PhysRevA.82.022105
[74] Ali, A. F.; Das, S.; Vagenas, E. C., The generalized uncertainty principle and quantum gravity phenomenology, pp 2407-9 (2010)
[75] Pedram, P., On the modification of Hamiltonians’ spectrum in gravitational quantum mechanics, Europhys. Lett., 89 (2010) · doi:10.1209/0295-5075/89/50008
[76] Chargui, Y.; Chetouani, L.; Trabelsi, A., Exact solution of D-dimensional Klein-Gordon oscillator with minimal length, Commun. Theor. Phys., 53, 231-6 (2010) · Zbl 1225.81061 · doi:10.1088/0253-6102/53/2/05
[77] Pedram, P., A class of GUP solutions in deformed quantum mechanics, Int. J. Mod. Phys. D, 19, 2003-9 (2011) · Zbl 1204.83044 · doi:10.1142/S0218271810018153
[78] Pedram, P.; Nozari, K.; Taheri, S. H., The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field, J. High Energy Phys., JHEP03(2011)093 (2011) · Zbl 1301.83015 · doi:10.1007/JHEP03(2011)093
[79] Hassanabadi, H.; Zarrinkamar, S.; Maghsoodi, E., Scattering states of Woods-Saxon interaction in minimal length quantum mechanics, Phys. Lett. B, 718, 678-82 (2012) · doi:10.1016/j.physletb.2012.11.005
[80] Pedram, P., Coherent states in gravitational quantum mechanics, Int. J. Mod. Phys. D, 22 (2012) · doi:10.1142/S0218271813500041
[81] Vahedi, J.; Nozari, K.; Pedram, P., Generalized uncertainty principle and the Ramsauer-Townsend effect, Grav. Cosmol., 18, 211-5 (2012) · Zbl 1258.83031 · doi:10.1134/S0202289312030097
[82] Pedram, P., Minimal length and the quantum bouncer: a nonperturbative study, Int. J. Theor. Phys., 51, 1901-10 (2012) · Zbl 1252.83045 · doi:10.1007/s10773-011-1066-6
[83] Benzair, H.; Boudjedaa, T.; Merad, M., Path integral for dirac oscillator with generalized uncertainty principle, J. Math. Phys., 53 (2012) · Zbl 1278.81057 · doi:10.1063/1.4768709
[84] Pedram, P., A higher order gup with minimal length uncertainty and maximal momentum II: applications, Phys. Lett. B, 718, 638-45 (2012) · doi:10.1016/j.physletb.2012.10.059
[85] Pedram, P., One-dimensional Hydrogen atom with minimal length uncertainty and maximal momentum, Europhys. Lett., 101 (2012) · doi:10.1209/0295-5075/101/30005
[86] Pedram, P., Nonperturbative effects of the minimal length uncertainty on the relativistic quantum mechanics, Phys. Lett. B, 710, 478-85 (2012) · doi:10.1016/j.physletb.2012.03.015
[87] Pedram, P., A Note on the one-dimensional hydrogen atom with minimal length uncertainty, J. Phys. A: Math. Theor, 45 (2012) · Zbl 1260.81332 · doi:10.1088/1751-8113/45/50/505304
[88] Hassanabadi, H.; Zarrinkamar, S.; Maghsoodi, E., Minimal length Dirac equation revisited, Eur. Phys. J. Plus, 128, 25 (2013) · Zbl 1268.81062 · doi:10.1140/epjp/i2013-13025-1
[89] Hassanabadi, H.; Zarrinkamar, S.; Rajabi, A., A simple efficient methodology for Dirac equation in minimal length quantum mechanics, Phys. Lett. B, 718, 1111-3 (2013) · Zbl 1332.81043 · doi:10.1016/j.physletb.2012.11.044
[90] Bouaziz, D., Kratzer’s molecular potential in quantum mechanics with a generalized uncertainty principle, Ann. Phys., NY, 355, 269-81 (2013) · Zbl 1343.81098 · doi:10.1016/j.aop.2015.01.032
[91] Moayedi, S. K.; Setare, M. R.; Khosropour, B., Lagrangian formulation of a magnetostatic field in the presence of a minimal length scale based on the Kempf algebra, Int. J. Mod. Phys. A, 28 (2013) · Zbl 1280.81150 · doi:10.1142/S0217751X1350142X
[92] Blado, G.; Owens, C.; Meyers, V., Quantum wells and the generalized uncertainty principle, Eur. J. Phys., 35 (2013) · Zbl 1307.81033 · doi:10.1088/0143-0807/35/6/065011
[93] Asghari, M.; Pedram, P.; Nozari, K., Harmonic oscillator with minimal length, minimal momentum and maximal momentum uncertainties in SUSYQM framework, Phys. Lett. B, 725, 451-5 (2013) · Zbl 1364.81108 · doi:10.1016/j.physletb.2013.07.030
[94] Ching, C-L; Parwani, R. R., Effect of maximal momentum on quantum mechanics scattering and bound states, Mod. Phys. Lett. A, 28 (2013) · doi:10.1142/S0217732313500612
[95] Oakes, T. L A.; Francisco, R. O.; Fabris, J. C.; Nogueira, J. A., Ground state of the hydrogen atom via dirac equation in a minimal length scenario, Eur. Phys. J. C, 73, 2495 (2013) · doi:10.1140/epjc/s10052-013-2495-6
[96] Faruque, S.; Rahman, M. A.; Moniruzzaman, M., Upper bound on minimal length from deuteron, Results Phys., 4, 52-53 (2014) · doi:10.1016/j.rinp.2014.05.002
[97] Das, S.; Robbins, M. P G.; Walton, M. A., Generalized uncertainty principle corrections to the simple harmonic oscillator in phase space, Can. J. Phys., 94, 139-46 (2014) · doi:10.1139/cjp-2015-0456
[98] Faizal, M.; Khalil, M. M.; Das, S., Time crystals from minimum time uncertainty, Eur. Phys. J. C, 76, 30 (2014) · doi:10.1140/epjc/s10052-016-3884-4
[99] Hassanabadi, H.; Hooshmand, P.; Zarrinkamar, S., The generalized uncertainty principle and harmonic interaction in three spatial dimensions, Few-Body Syst., 56, 19-27 (2015) · doi:10.1007/s00601-014-0910-7
[100] Dey, S.; Fring, A.; Hussin, V., Nonclassicality versus entanglement in a noncommutative space, Int. J. Mod. Phys. B, 31 (2015) · Zbl 1355.81092 · doi:10.1142/S0217979216502489
[101] Bosso, P.; Das, S., Generalized uncertainty principle and angular momentum, Ann. Phys., NY, 383, 416-38 (2016) · Zbl 1373.81408 · doi:10.1016/j.aop.2017.06.003
[102] Wang, B-Q; Long, C-Y; Long, Z-W; Xu, T., Solutions of the Schrödinger equation under topological defects space-times and generalized uncertainty principle, Eur. Phys. J. Plus, 131, 378 (2016) · doi:10.1140/epjp/i2016-16378-9
[103] Shababi, H.; Pedram, P.; Chung, W. S., On the quantum mechanical solutions with minimal length uncertainty, Int. J. Mod. Phys. A, 31 (2016) · Zbl 1346.81053 · doi:10.1142/S0217751X16501013
[104] Rossi, M. A C.; Giani, T.; Paris, M. G A., Probing deformed quantum commutators, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.024014
[105] Deb, S.; Das, S.; Vagenas, E. C., Discreteness of space from GUP in a weak gravitational field, Phys. Lett. B, 755, 17-23 (2016) · Zbl 1367.81151 · doi:10.1016/j.physletb.2016.01.059
[106] Bouaziz, D.; Birkandan, T., Singular inverse square potential in coordinate space with a minimal length, Ann. Phys., NY, 387, 62-74 (2017) · Zbl 1377.81075 · doi:10.1016/j.aop.2017.10.004
[107] Bosso, P.; Das, S.; Mann, R. B., Planck scale Corrections to the Harmonic Oscillator, Coherent and Squeezed States, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.066008
[108] Todorinov, V.; Bosso, P.; Das, S., Relativistic generalized uncertainty principle, Ann. Phys., NY, 405, 92-100 (2018) · Zbl 1414.81266 · doi:10.1016/j.aop.2019.03.014
[109] Park, D.; Jung, E., GUP and point interaction, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.066007
[110] Twagirayezu, F. J., Generalized uncertainty principle corrections on atomic excitation, Ann. Phys., NY, 422 (2020) · Zbl 1448.81384 · doi:10.1016/j.aop.2020.168294
[111] Petruzziello, L., Generalized uncertainty principle with maximal observable momentum and no minimal length indeterminacy, Class. Quantum Grav., 38 (2020) · Zbl 1481.83046 · doi:10.1088/1361-6382/abfd8f
[112] Girdhar, P.; Doherty, A. C., Testing generalised uncertainty principles through quantum noise, New J. Phys., 22 (2020) · doi:10.1088/1367-2630/abb43c
[113] Aghababaei, S.; Moradpour, H.; Rezaei, G.; Khorshidian, S., Minimal length, Berry phase and spin-orbit interactions, Phys. Scr., 96 (2021) · doi:10.1088/1402-4896/abe5d2
[114] Luciano, G. G.; Petruzziello, L., Generalized uncertainty principle and its implications on geometric phases in quantum mechanics, Eur. Phys. J. Plus, 136, 179 (2021) · doi:10.1140/epjp/s13360-021-01161-0
[115] Bosso, P.; Luciano, G. G., Generalized uncertainty principle: from the harmonic oscillator to a QFT toy model, Eur. Phys. J. C, 81, 982 (2021) · doi:10.1140/epjc/s10052-021-09795-1
[116] Gubitosi, G.; Mignemi, S., Diffeomorphisms in momentum space: physical implications of different choices of momentum coordinates in the Galilean Snyder model, Universe, 8, 108 (2021) · doi:10.3390/universe8020108
[117] Bosso, P.; Petruzziello, L.; Wagner, F.; Illuminati, F., Spin operator, Bell nonlocality and Tsirelson bound in quantum-gravity induced minimal-length quantum mechanics, Commun. Phys., 6, 114 (2023) · doi:10.1038/s42005-023-01229-6
[118] Adler, R. J.; Chen, P.; Santiago, D. I., The generalized uncertainty principle and Black Hole remnants, Gen. Relativ. Gravit., 33, 2101-8 (2001) · Zbl 1003.83020 · doi:10.1023/A:1015281430411
[119] Chen, P.; Adler, R. J., Black Hole remnants and dark matter, Nucl. Phys. B Proc. Suppl., 124, 103-6 (2002) · Zbl 1037.83006 · doi:10.1016/S0920-5632(03)02088-7
[120] Cavaglia, M.; Das, S.; Maartens, R., Will we observe Black Holes at LHC?, Class. Quantum Grav., 20, L205-12 (2003) · Zbl 1044.83502 · doi:10.1088/0264-9381/20/15/101
[121] Medved, A. J M.; Vagenas, E. C., When conceptual worlds collide: The GUP and the BH entropy, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.124021
[122] Cavaglia, M.; Das, S., How classical are TeV-scale Black Holes?, Class. Quantum Grav., 21, 4511-22 (2004) · Zbl 1060.83521 · doi:10.1088/0264-9381/21/19/001
[123] Myung, Y. S.; Kim, Y-W; Park, Y-J, Black hole thermodynamics with generalized uncertainty principle, Phys. Lett. B, 645, 393-7 (2006) · Zbl 1273.83106 · doi:10.1016/j.physletb.2006.12.062
[124] Nouicer, K., Quantum-corrected Black Hole thermodynamics to all orders in the Planck length, Phys. Lett. B, 646, 63-71 (2007) · Zbl 1248.83079 · doi:10.1016/j.physletb.2006.12.072
[125] Park, M-i, The generalized uncertainty principle in (A)dS space and the modification of Hawking temperature from the minimal length, Phys. Lett. B, 659, 698-702 (2007) · Zbl 1246.83141 · doi:10.1016/j.physletb.2007.11.090
[126] Xiang, L.; Wen, X. Q., Black Hole thermodynamics with generalized uncertainty principle, J. High Energy Phys., JHEP10(2009)046 (2009) · doi:10.1088/1126-6708/2009/10/046
[127] Myung, Y. S., Thermodynamics of Black Holes in the deformed Hořava-Lifshitz gravity, Phys. Lett. B, 678, 127-30 (2009) · doi:10.1016/j.physletb.2009.06.013
[128] Jizba, P.; Kleinert, H.; Scardigli, F., Uncertainty relation on world crystal and its applications to micro Black Holes, Phys. Rev. D, 81 (2009) · doi:10.1103/PhysRevD.81.084030
[129] Scardigli, F.; Casadio, R., Gravitational tests of the generalized uncertainty principle, Eur. Phys. J. C, 75, 425 (2014) · doi:10.1140/epjc/s10052-015-3635-y
[130] Scardigli, F.; Lambiase, G.; Vagenas, E., GUP parameter from quantum corrections to the Newtonian potential, Phys. Lett. B, 767, 242-6 (2016) · Zbl 1404.83018 · doi:10.1016/j.physletb.2017.01.054
[131] Custodio, P. S.; Horvath, J. E., The Generalized Uncertainty Principle, entropy bounds and Black Hole (non-)evaporation in a thermal bath, Class. Quantum Grav., 20, L197-203 (2003) · Zbl 1038.83021 · doi:10.1088/0264-9381/20/14/103
[132] Setare, M. R., Corrections to the Cardy-Verlinde formula from the generalized uncertainty principle, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.087501
[133] Setare, M. R., The generalized uncertainty principle and corrections to the Cardy-Verlinde formula in SAdS_5 Black Holes, Int. J. Mod. Phys. A, 21, 1325-32 (2005) · Zbl 1094.83510 · doi:10.1142/S0217751X06025304
[134] Nozari, K.; Mehdipour, S. H., Gravitational Uncertainty and Black Hole Remnants, Mod. Phys. Lett. A, 20, 2937-48 (2008) · doi:10.1142/S0217732305018050
[135] Nozari, K.; Mehdipour, S. H., Quantum-corrected Black Hole thermodynamics in extra dimensions, Int. J. Mod. Phys. A, 21, 4979-92 (2005) · Zbl 1133.83361 · doi:10.1142/S0217751X06031570
[136] Scardigli, F., Hawking temperature for various kinds of Black Holes from Heisenberg uncertainty principle, Int. J. Geom. Methods Mod. Phys., 17 (2020) · Zbl 07818847 · doi:10.1142/S0219887820400046
[137] Ren, Z.; Sheng-Li, Z., Generalized uncertainty principle and Black Hole entropy, Phys. Lett. B, 641, 208-11 (2006) · Zbl 1248.83083 · doi:10.1016/j.physletb.2006.08.056
[138] Ko, Y.; Lee, S.; Nam, S., Tests of quantum gravity via generalized uncertainty principle (2006)
[139] Xiang, L., Dispersion relation, Black Hole thermodynamics and generalization of uncertainty principle, Phys. Lett. B, 638, 519-22 (2006) · Zbl 1248.83087 · doi:10.1016/j.physletb.2006.06.006
[140] Nozari, K.; Mehdipour, S. H., Failure of standard thermodynamics in Planck scale Black Hole system, Chaos Solitons Fractals, 39, 956-70 (2006) · doi:10.1016/j.chaos.2007.02.018
[141] Nozari, K.; Fazlpour, B., Reissner-Nordström Black Hole thermodynamics in noncommutative spaces, Acta Phys. Pol. B, 39, 1363-74 (2006) · Zbl 1371.83109 · doi:10.1088/1126-6708/2006/10/045
[142] Nozari, K.; Sefiedgar, A. S., On the existence of the logarithmic correction term in Black Hole entropy-area relation, Gen. Relativ. Gravit., 39, 501-9 (2006) · Zbl 1137.83349 · doi:10.1007/s10714-007-0397-3
[143] Nozari, K.; Fazlpour, B., Thermodynamics of an evaporating Schwarzschild Black Hole in noncommutative space, Mod. Phys. Lett. A, 22, 2917-30 (2006) · Zbl 1144.83321 · doi:10.1142/S0217732307023602
[144] Kim, W.; Son, E. J.; Yoon, M., Thermodynamics of a Black Hole based on a generalized uncertainty principle, J. High Energy Phys., JHEP01(2008)035 (2007) · doi:10.1088/1126-6708/2008/01/035
[145] Nouicer, K., Black holes thermodynamics to all orders in the Planck length in extra dimensions, Class. Quantum Grav., 24, 5917-34 (2007) · Zbl 1130.83317 · doi:10.1088/0264-9381/24/23/014
[146] Arraut, I.; Batic, D.; Nowakowski, M., Comparing two approaches to Hawking radiation of Schwarzschild-de Sitter Black Holes, Class. Quantum Grav., 26 (2008) · Zbl 1170.83401 · doi:10.1088/0264-9381/26/12/125006
[147] Farmany, A.; Dehghani, M.; Setare, M. R.; Mortazavi, S. S., Tunneling Black Hole radiation, generalized uncertainty principle and de Sitter-Schwarzschild Black Hole, Phys. Lett. B, 682, 114-7 (2009) · doi:10.1016/j.physletb.2009.10.061
[148] Dehghani, M.; Farmany, A., Higher dimensional Black Hole radiation and a generalized uncertainty principle, Phys. Lett. B, 675, 460-2 (2009) · doi:10.1016/j.physletb.2009.04.058
[149] Banerjee, R.; Ghosh, S., Generalised uncertainty principle, remnant mass and singularity problem in Black Hole thermodynamics, Phys. Lett. B, 688, 224-9 (2010) · doi:10.1016/j.physletb.2010.04.008
[150] Setare, M. R.; Momeni, D.; Myrzakulov, R., Entropic corrections to Newton’s law, Phys. Scr., 85 (2010) · Zbl 1277.70003 · doi:10.1088/0031-8949/85/06/065007
[151] Said, J. L.; Adami, K. Z., The generalized uncertainty principle in f(R) gravity for a charged Black Hole, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.043008
[152] Majumder, B., Black Hole entropy and the modified uncertainty principle: a heuristic analysis, Phys. Lett. B, 703, 402-5 (2011) · doi:10.1016/j.physletb.2011.08.026
[153] Sabri, Y.; Nouicer, K., Phase transitions of a GUP-corrected Schwarzschild Black Hole within isothermal cavities, Class. Quantum Grav., 29 (2012) · Zbl 1266.83126 · doi:10.1088/0264-9381/29/21/215015
[154] Tawfik, A., Impacts of generalized uncertainty principle on Black Hole thermodynamics and Salecker-Wigner inequalities, J. Cosmol. Astropart. Phys., JCAP07(2013)040 (2013) · doi:10.1088/1475-7516/2013/07/040
[155] Xiang, L.; Ling, Y.; Shen, Y. G., Singularities and the Finale of Black Hole evaporation, Int. J. Mod. Phys. D, 22 (2013) · Zbl 1278.83035 · doi:10.1142/S0218271813420169
[156] Majumder, B., The effects of minimal length in entropic force approach, Adv. High Energy Phys., 2013 (2013) · Zbl 1328.81246 · doi:10.1155/2013/296836
[157] Gangopadhyay, S.; Dutta, A.; Saha, A., Generalized uncertainty principle and Black Hole thermodynamics, Gen. Relativ. Gravit., 46, 1661 (2013) · Zbl 1286.83057 · doi:10.1007/s10714-013-1661-3
[158] Chen, P.; Ong, Y. C.; Yeom, D-h, Generalized uncertainty principle: implications for Black Hole complementarity, J. High Energy Phys., JHEP12(2014)021 (2014) · Zbl 1333.83066 · doi:10.1007/JHEP12(2014)021
[159] Faizal, M.; Khalil, M. M., GUP-Corrected Thermodynamics for all Black Objects and the Existence of Remnants, Int. J. Mod. Phys. A, 30 (2014) · Zbl 1330.83021 · doi:10.1142/S0217751X15501444
[160] Tawfik, A. N.; Dahab, E. A E., Corrections to entropy and thermodynamics of charged Black Hole using generalized uncertainty principle, Int. J. Mod. Phys. A, 30 (2015) · Zbl 1317.83053 · doi:10.1142/S0217751X1550030X
[161] Ali, A. F.; Khalil, M. M.; Vagenas, E. C., Minimal Length in quantum gravity and gravitational measurements, Europhys. Lett., 112 (2015) · doi:10.1209/0295-5075/112/20005
[162] Tawfik, A. N.; Diab, A. M., Black Hole corrections due to minimal length and modified dispersion relation, Int. J. Mod. Phys. A, 30 (2015) · Zbl 1319.83019 · doi:10.1142/S0217751X15500591
[163] Gangopadhyay, S.; Dutta, A.; Faizal, M., Constraints on the generalized uncertainty principle from Black Hole thermodynamics, Europhys. Lett., 112 (2015) · doi:10.1209/0295-5075/112/20006
[164] Anacleto, M. A., Quantum-corrected two-dimensional Horava-Lifshitz Black Hole entropy, Adv. High Energy Phys., 2016 (2015) · Zbl 1375.83022 · doi:10.1155/2016/8465759
[165] Anacleto, M. A.; Brito, F. A.; Luna, G. C.; Passos, E.; Spinelly, J., Quantum-corrected finite entropy of noncommutative acoustic Black Holes, Ann. Phys., NY, 362, 436-48 (2015) · Zbl 1343.83019 · doi:10.1016/j.aop.2015.08.009
[166] Anacleto, M. A.; Brito, F. A.; Passos, E., Quantum-corrected self-dual Black Hole entropy in tunneling formalism with GUP, Phys. Lett. B, 749, 181-6 (2015) · Zbl 1364.83016 · doi:10.1016/j.physletb.2015.07.072
[167] Anacleto, M. A.; Brito, F. A.; Cavalcanti, A. G.; Passos, E.; Spinelly, J., Quantum correction to the entropy of noncommutative BTZ Black Hole, Gen. Relativ. Gravit., 50, 23 (2015) · Zbl 1390.83169 · doi:10.1007/s10714-018-2344-x
[168] Hammad, F., fR)-modified gravity, wald entropy and the generalized uncertainty principle, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.044004
[169] Dehghani, M., Corrections to the Hawking tunneling radiation in extra dimensions, Phys. Lett. B, 749, 125-9 (2015) · Zbl 1364.83020 · doi:10.1016/j.physletb.2015.07.051
[170] Sakalli, I.; Ovgun, A.; Jusufi, K., GUP assisted Hawking radiation of rotating acoustic Black Holes, Astrophys. Space Sci., 361, 330 (2016) · doi:10.1007/s10509-016-2922-x
[171] Lambiase, G.; Scardigli, F., Lorentz violation and generalized uncertainty principle, Phys. Rev. D, 97 (2017) · doi:10.1103/PhysRevD.97.075003
[172] Ong, Y. C., Zero mass remnant as an asymptotic state of Hawking evaporation, J. High Energy Phys., JHEP10(2018)195 (2018) · doi:10.1007/JHEP10(2018)195
[173] Ong, Y. C., GUP-corrected Black Hole thermodynamics and the maximum force conjecture, Phys. Lett. B, 785, 217-20 (2018) · Zbl 1398.83057 · doi:10.1016/j.physletb.2018.08.065
[174] Maluf, R. V.; Neves, J. C S., Thermodynamics of a class of regular Black Holes with a generalized uncertainty principle, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.104015
[175] Maluf, R. V.; Neves, J. C S., Bardeen regular Black Hole as a quantum-corrected Schwarzschild Black Hole, Int. J. Mod. Phys. D, 28 (2018) · doi:10.1142/S0218271819500482
[176] Alonso-Serrano, A.; Dabrowski, M. P.; Gohar, H., Minimal length and the flow of entropy from Black Holes, Int. J. Mod. Phys. D, 27 (2018) · doi:10.1142/S0218271818470284
[177] Alonso-Serrano, A.; Dabrowski, M. P.; Gohar, H., Generalized uncertainty principle impact onto the Black Holes information flux and the sparsity of Hawking radiation, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.044029
[178] Contreras, E.; Bargue no, P., Scale-dependent Hayward Black Hole and the generalized uncertainty principle, Mod. Phys. Lett. A, 33 (2018) · doi:10.1142/S0217732318501845
[179] Buoninfante, L.; Luciano, G. G.; Petruzziello, L., Generalized uncertainty principle and corpuscular gravity, Eur. Phys. J. C, 79, 663 (2019) · doi:10.1140/epjc/s10052-019-7164-y
[180] Kanazawa, T.; Lambiase, G.; Vilasi, G.; Yoshioka, A., Noncommutative Schwarzschild geometry and generalized uncertainty principle, Eur. Phys. J. C, 79, 95 (2019) · doi:10.1140/epjc/s10052-019-6610-1
[181] Hassanabadi, H.; Maghsoodi, E.; Chung, W. S., Analysis of Black Hole thermodynamics with a new higher order generalized uncertainty principle, Eur. Phys. J. C, 79, 358 (2019) · doi:10.1140/epjc/s10052-019-6871-8
[182] Alonso-Serrano, A.; Dabrowski, M. P.; Gohar, H., Nonextensive Black Hole entropy and quantum gravity effects at the last stages of evaporation, Phys. Rev. D, 103 (2020) · doi:10.1103/PhysRevD.103.026021
[183] Du, X-D; Long, C-Y, The influence of approximation in generalized uncertainty principle on Black Hole evaporation, J. Cosmol. Astropart. Phys., JCAP04(2022)031 (2021) · Zbl 1506.83027 · doi:10.1088/1475-7516/2022/04/031
[184] Bosso, P.; Fridman, M.; Luciano, G. G., Dark matter as an effect of a minimal length, Front. Astron. Space Sci., 9 (2022) · doi:10.3389/fspas.2022.932276
[185] Nozari, K.; Mehdipour, S. H., Quantum gravity and recovery of information in Black Hole evaporation, Europhys. Lett., 84 (2008) · doi:10.1209/0295-5075/84/20008
[186] Majumder, B., Black Hole Entropy with minimal length in Tunneling formalism, Gen. Relativ. Gravit., 45, 2403-14 (2012) · Zbl 1274.83084 · doi:10.1007/s10714-013-1581-2
[187] Nozari, K.; Saghafi, S., Natural cutoffs and quantum tunneling from Black Hole horizon, J. High Energy Phys., JHEP11(2012)005 (2012) · doi:10.1007/JHEP11(2012)005
[188] Chen, D.; Wu, H.; Yang, H., Fermion’s tunnelling with effects of quantum gravity, Adv. High Energy Phys., 2013 (2013) · Zbl 1328.81245 · doi:10.1155/2013/432412
[189] Chen, D.; Wu, H.; Yang, H., Observing remnants by fermions’ tunneling, J. Cosmol. Astropart. Phys., JCAP03(2014)036 (2013) · doi:10.1088/1475-7516/2014/03/036
[190] Chen, D.; Jiang, Q. Q.; Wang, P.; Yang, H., Remnants, fermions’ tunnelling and effects of quantum gravity, J. High Energy Phys., JHEP11(2013)176 (2013) · Zbl 1342.83143 · doi:10.1007/JHEP11(2013)176
[191] Feng, Z. W.; Li, H. L.; Zu, X. T.; Yang, S. Z., Quantum corrections to the thermodynamics of Schwarzschild-Tangherlini Black Hole and the generalized uncertainty principle, Eur. Phys. J. C, 76, 212 (2016) · doi:10.1140/epjc/s10052-016-4057-1
[192] Övgün, A., Entangled particles tunneling from a schwarzschild Black Hole immersed in an electromagnetic universe with GUP, Int. J. Theor. Phys., 55, 2919-27 (2015) · Zbl 1342.81048 · doi:10.1007/s10773-016-2923-0
[193] Li, X-Q, Massive vector particles tunneling from Black Holes influenced by the generalized uncertainty principle, Phys. Lett. B, 763, 80-86 (2016) · Zbl 1370.83055 · doi:10.1016/j.physletb.2016.10.032
[194] Övgün, A.; Jusufi, K., The effect of the GUP on massive vector and scalar particles tunneling from a warped DGP gravity Black Hole, Eur. Phys. J. Plus, 132, 298 (2017) · doi:10.1140/epjp/i2017-11574-9
[195] Gecim, G.; Sucu, Y., Quantum gravity effect on the tunneling particles from 2+1 dimensional New-type Black Hole, Adv. High Energy Phys., 2018 (2017) · Zbl 1404.83048 · doi:10.1155/2018/8728564
[196] Gecim, G.; Sucu, Y., The GUP effect on Hawking Radiation of the 2+1 dimensional Black Hole, Phys. Lett. B, 773, 391-4 (2017) · Zbl 1378.83039 · doi:10.1016/j.physletb.2017.08.053
[197] Kanzi, S.; Sakallı, I., GUP modified Hawking radiation in Bumblebee gravity, Nucl. Phys. B, 946 (2019) · Zbl 1430.83047 · doi:10.1016/j.nuclphysb.2019.114703
[198] Buoninfante, L.; Lambiase, G.; Luciano, G. G.; Petruzziello, L., Phenomenology of GUP stars, Eur. Phys. J. C, 80, 853 (2020) · doi:10.1140/epjc/s10052-020-08436-3
[199] Buoninfante, L.; Luciano, G. G.; Petruzziello, L.; Scardigli, F., Bekenstein bound and uncertainty relations, Phys. Lett. B, 824 (2022) · doi:10.1016/j.physletb.2021.136818
[200] Chen, P., Generalized uncertainty principle and Dark Matter (2003) · Zbl 1057.83019
[201] Chen, P., Inflation induced Planck-Size Black Hole remnants as dark matter, New Astron. Rev., 49, 233-9 (2004) · doi:10.1016/j.newar.2005.01.015
[202] Battisti, M. V.; Montani, G., The big-bang singularity in the framework of a generalized uncertainty principle, Phys. Lett. B, 656, 96-101 (2007) · Zbl 1246.83238 · doi:10.1016/j.physletb.2007.09.012
[203] Battisti, M. V.; Montani, G., Minisuperspace dynamics in a generalized uncertainty principle framework, AIP Conf. Proc., 966, 219-26 (2007) · Zbl 1157.83352 · doi:10.1063/1.2836998
[204] Battisti, M. V.; Montani, G., Quantum dynamics of the taub universe in a generalized uncertainty principle framework, Phys. Rev. D, 77 (2007) · doi:10.1103/PhysRevD.77.023518
[205] Bina, A.; Atazadeh, K.; Jalalzadeh, S., Noncommutativity, generalized uncertainty principle and FRW cosmology, Int. J. Theor. Phys., 47, 1354-62 (2007) · Zbl 1188.83091 · doi:10.1007/s10773-007-9577-x
[206] Vakili, B.; Sepangi, H. R., Generalized uncertainty principle in Bianchi type I quantum cosmology, Phys. Lett. B, 651, 79-83 (2007) · Zbl 1248.83036 · doi:10.1016/j.physletb.2007.06.015
[207] Vakili, B., Cosmology with minimal length uncertainty relations, Int. J. Mod. Phys. D, 18, 1059-71 (2008) · Zbl 1168.83347 · doi:10.1142/S0218271809014935
[208] Vakili, B., Dilaton cosmology, noncommutativity and generalized uncertainty principle, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.044023
[209] Zhu, T.; Ren, J-R; Li, M-F, Influence of generalized and extended uncertainty principle on thermodynamics of FRW universe, Phys. Lett. B, 674, 204-9 (2008) · doi:10.1016/j.physletb.2009.03.020
[210] Battisti, M. V.; Meljanac, S., Modification of Heisenberg uncertainty relations in non-commutative Snyder space-time geometry, Phys. Rev. D, 79 (2008) · doi:10.1103/PhysRevD.79.067505
[211] Lidsey, J. E., Holographic cosmology from the first law of thermodynamics and the generalized uncertainty principle, Phys. Rev. D, 88 (2009) · doi:10.1103/PhysRevD.88.103519
[212] Basilakos, S.; Das, S.; Vagenas, E. C., Quantum Gravity Corrections and Entropy at the Planck time, J. Cosmol. Astropart. Phys., JCAP09(2010)027 (2010) · doi:10.1088/1475-7516/2010/09/027
[213] Kim, W.; Park, Y-J; Yoon, M., Entropy of the FRW Universe based on the generalized uncertainty principle, Mod. Phys. Lett. A, 25, 1267-74 (2010) · Zbl 1193.83064 · doi:10.1142/S0217732310033049
[214] Hossain, G. M.; Husain, V.; Seahra, S. S., Background independent quantization and the uncertainty principle, Class. Quantum Grav., 27 (2010) · Zbl 1197.83052 · doi:10.1088/0264-9381/27/16/165013
[215] Chemissany, W.; Das, S.; Ali, A. F.; Vagenas, E. C., Effect of the Generalized Uncertainty Principle on Post-Inflation Preheating, J. Cosmol. Astropart. Phys., JCAP12(2011)017 (2011) · doi:10.1088/1475-7516/2011/12/017
[216] Majumder, B., Dilaton cosmology and the modified uncertainty principle, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.064031
[217] Majumder, B., The generalized uncertainty principle and the Friedmann equations, Astrophys. Space Sci., 336, 331-5 (2011) · doi:10.1007/s10509-011-0815-6
[218] Majumder, B., Effects of the modified uncertainty principle on the inflation parameters, Phys. Lett. B, 709, 133-6 (2012) · doi:10.1016/j.physletb.2012.02.022
[219] Ali, A. F., Emergence of cosmic space and minimal length in quantum gravity, Phys. Lett. B, 732, 335-42 (2013) · doi:10.1016/j.physletb.2014.04.011
[220] Ali, A. F.; Tawfik, A., Effects of the generalized uncertainty principle on compact stars, Int. J. Mod. Phys. D, 22 (2013) · doi:10.1142/S021827181350020X
[221] Jalalzadeh, S.; Gorji, M. A.; Nozari, K., Deviation from the standard uncertainty principle and the Dark energy problem, Gen. Relativ. Gravit., 46, 1632 (2013) · Zbl 1286.83103 · doi:10.1007/s10714-013-1632-8
[222] Ali, A. F.; Majumder, B., Towards a cosmology with minimal length and maximal energy, Class. Quantum Grav., 31 (2014) · Zbl 1304.83020 · doi:10.1088/0264-9381/31/21/215007
[223] Awad, A.; Ali, A. F., Minimal length, Friedmann equations and maximum density, J. High Energy Phys., JHEP06(2014)093 (2014) · doi:10.1007/JHEP06(2014)093
[224] Awad, A.; Ali, A. F., Planck-Scale corrections to Friedmann equation, Cent. Eur. J. Phys., 12, 245-55 (2014) · doi:10.2478/s11534-014-0441-3
[225] Paliathanasis, A.; Pan, S.; Pramanik, S., Scalar field cosmology modified by the generalized uncertainty principle, Class. Quantum Grav., 32 (2015) · Zbl 1331.83128 · doi:10.1088/0264-9381/32/24/245006
[226] Garattini, R.; Faizal, M., Cosmological Constant from a Deformation of the Wheeler-DeWitt equation, Nucl. Phys. B, 905, 313-26 (2015) · Zbl 1332.83073 · doi:10.1016/j.nuclphysb.2016.02.023
[227] Moussa, M., Effect of generalized uncertainty principle on main-sequence stars and white dwarfs, Adv. High Energy Phys., 2015 (2015) · Zbl 1433.81010 · doi:10.1155/2015/343284
[228] Ali, A. F.; Faizal, M.; Khalil, M. M., Short distance physics of the inflationary de sitter universe, J. Cosmol. Astropart. Phys., JCAP09(2015)025 (2015) · doi:10.1088/1475-7516/2015/09/025
[229] Atazadeh, K.; Darabi, F., Einstein static universe from GUP, Phys. Dark Univ., 16, 87-93 (2016) · doi:10.1016/j.dark.2017.04.008
[230] Salah, M., Non-singular and cyclic universe from the modified GUP, J. Cosmol. Astropart. Phys., JCAP02(2017)035 (2016) · Zbl 1515.83442 · doi:10.1088/1475-7516/2017/02/035
[231] Khodadi, M.; Nozari, K.; Abedi, H.; Capozziello, S., Planck scale effects on the stochastic gravitational wave background generated from cosmological hadronization transition: a qualitative study, Phys. Lett. B, 783, 326-33 (2018) · doi:10.1016/j.physletb.2018.07.010
[232] Kouwn, S., Implications of minimum and maximum length scales in cosmology, Phys. Dark Univ., 21, 76-81 (2018) · doi:10.1016/j.dark.2018.07.001
[233] Scardigli, F.; Blasone, M.; Luciano, G.; Casadio, R., Modified unruh effect from generalized uncertainty principle, Eur. Phys. J. C, 78, 728 (2018) · doi:10.1140/epjc/s10052-018-6209-y
[234] Bosso, P.; Obregón, O., Minimal length effects on quantum cosmology and quantum Black Hole models, Class. Quantum Grav., 37 (2019) · Zbl 1478.83081 · doi:10.1088/1361-6382/ab6038
[235] Blasone, M.; Lambiase, G.; Luciano, G. G.; Petruzziello, L.; Scardigli, F., Heuristic derivation of Casimir effect in minimal length theories, Int. J. Mod. Phys. D, 29 (2019) · doi:10.1142/S021827182050011X
[236] Gusson, M. F.; Gonçalves, A. O O.; Furtado, R. G.; Fabris, J. C.; Nogueira, J. A., Quantum cosmology with dynamical vacuum in a minimal-length scenario, Eur. Phys. J. C, 81, 336 (2020) · doi:10.1140/epjc/s10052-021-09114-8
[237] Giardino, S.; Salzano, V., Cosmological constraints on the generalized uncertainty principle from modified Friedmann equations, Eur. Phys. J. C, 81, 110 (2020) · doi:10.1140/epjc/s10052-021-08914-2
[238] Giacomini, A.; Leon, G.; Paliathanasis, A.; Pan, S., Dynamics of quintessence in generalized uncertainty principle, Eur. Phys. J. C, 80, 931 (2020) · doi:10.1140/epjc/s10052-020-08508-4
[239] Paliathanasis, A., Interacting quintessence in light of Generalized Uncertainty Principle: Cosmological perturbations and dynamics, Eur. Phys. J. C, 81, 607 (2021) · doi:10.1140/epjc/s10052-021-09362-8
[240] Luciano, G. G., Primordial big bang nucleosynthesis and generalized uncertainty principle, Eur. Phys. J. C, 81, 1086 (2021) · doi:10.1140/epjc/s10052-021-09891-2
[241] Moussa, M.; Shababi, H.; Rahaman, A.; Kumar Dey, U., Minimal length, maximal momentum and stochastic gravitational waves spectrum generated from cosmological QCD phase transition, Phys. Lett. B, 820 (2021) · Zbl 07414487 · doi:10.1016/j.physletb.2021.136488
[242] Nenmeli, V., Maximal momentum GUP leads to quadratic gravity, Phys. Lett. B, 821 (2021) · Zbl 07414612 · doi:10.1016/j.physletb.2021.136621
[243] Nozari, K.; Akhshabi, S., On the stability of planetary circular orbits in noncommutative spaces, Chaos Solitons Fractals, 37, 324-31 (2006) · Zbl 1138.81456 · doi:10.1016/j.chaos.2006.09.042
[244] Casadio, R.; Garattini, R.; Scardigli, F., Point-like sources and the scale of quantum gravity, Phys. Lett. B, 679, 156-9 (2009) · doi:10.1016/j.physletb.2009.06.076
[245] Tkachuk, V. M., Deformed Heisenberg algebra with minimal length and equivalence principle, Phys. Rev. A, 86 (2013) · doi:10.1103/PhysRevA.86.062112
[246] Ghosh, S., Quantum gravity effects in geodesic motion and predictions of equivalence principle violation, Class. Quantum Grav., 31 (2013) · Zbl 1302.83020 · doi:10.1088/0264-9381/31/2/025025
[247] Ahmadi, F.; Khodagholizadeh, J., Effect of GUP on the Kepler problem and a variable minimal length, Can. J. Phys., 92, 484-7 (2014) · doi:10.1139/cjp-2013-0354
[248] Feng, Z-W; Yang, S-Z; Li, H-L; Zu, X-T, Constraining the generalized uncertainty principle with the gravitational wave event GW150914, Phys. Lett. B, 768, 81-85 (2016) · doi:10.1016/j.physletb.2017.02.043
[249] Vagenas, E. C.; Alasfar, L.; Alsaleh, S. M.; Ali, A. F., The GUP and quantum Raychaudhuri equation, Nucl. Phys. B, 931, 72-78 (2017) · Zbl 1390.83075 · doi:10.1016/j.nuclphysb.2018.04.004
[250] Ong, Y. C., Generalized uncertainty principle, Black Holes and white dwarfs: a tale of two infinities, J. Cosmol. Astropart. Phys., JCAP09(2018)015 (2018) · Zbl 1527.83060 · doi:10.1088/1475-7516/2018/09/015
[251] Ong, Y. C.; Yao, Y., Generalized uncertainty principle and white dwarfs redux: how cosmological constant protects chandrasekhar limit, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.126018
[252] Bosso, P.; Das, S.; Mann, R. B., Potential tests of the generalized uncertainty principle in the advanced LIGO experiment, Phys. Lett. B, 785, 498-505 (2018) · doi:10.1016/j.physletb.2018.08.061
[253] Neves, J. C S., Upper bound on the GUP parameter using the Black Hole shadow, Eur. Phys. J. C, 80, 343 (2019) · doi:10.1140/epjc/s10052-020-7913-y
[254] Moradpour, H.; Ziaie, A. H.; Ghaffari, S.; Feleppa, F., The generalized and extended uncertainty principles and their implications on the Jeans mass, Mon. Not. R. Astron. Soc., 488, L69-L74 (2019) · doi:10.1093/mnrasl/slz098
[255] Viaggiu, S., A proposal for Heisenberg uncertainty principle and STUR for curved backgrounds: an application to white dwarf, neutron stars and Black Holes, Class. Quantum Grav., 38 (2020) · Zbl 1479.83184 · doi:10.1088/1361-6382/abc907
[256] El-Nabulsi, R. A., Generalized uncertainty principle in astrophysics from fermi statistical physics arguments, Int. J. Theor. Phys., 59, 2083-90 (2020) · Zbl 1447.83008 · doi:10.1007/s10773-020-04480-7
[257] Jusufi, K., Constraining the generalized uncertainty principle through Black Hole shadow and quasiperiodic oscillations, Int. J. Geom. Methods Mod. Phys., 19 (2020) · Zbl 1534.83048 · doi:10.1142/S0219887822500682
[258] Mathew, A.; Nandy, M. K., Existence of Chandrasekhar’s limit in GUP white dwarfs, R. Soc. Open Sci., 8 (2020) · doi:10.1098/rsos.210301
[259] Abac, A. G.; Esguerra, J. P H.; Otadoy, R. E S., Modified structure equations and mass-radius relations of white dwarfs arising from the linear generalized uncertainty principle, Int. J. Mod. Phys. D, 30 (2021) · Zbl 1457.85004 · doi:10.1142/S021827182150005X
[260] Belfaqih, I. H.; Maulana, H.; Sulaksono, A., White dwarfs and generalized uncertainty principle, Int. J. Mod. Phys. D, 30 (2021) · Zbl 1466.85004 · doi:10.1142/S0218271821500644
[261] Anacleto, M.; Campos, J. A V.; Brito, F. A.; Passos, E., Quasinormal modes and shadow of a Schwarzschild Black Hole with GUP, Ann. Phys., NY, 434 (2021) · Zbl 1482.83071 · doi:10.1016/j.aop.2021.168662
[262] Abac, A. G.; Esguerra, J. P H., Implications of the generalized uncertainty principle on the Walecka model equation of state and neutron star structure, Int. J. Mod. Phys. D, 30 (2021) · Zbl 1466.85002 · doi:10.1142/S0218271821500553
[263] Blanchette, K.; Das, S.; Rastgoo, S., Effective GUP-modified Raychaudhuri equation and Black Hole singularity: four models, J. High Energy Phys., JHEP09(2021)062 (2021) · Zbl 1472.83064 · doi:10.1007/JHEP09(2021)062
[264] Das, A.; Das, S.; Mansour, N. R.; Vagenas, E. C., Bounds on GUP parameters from GW150914 and GW190521, Phys. Lett. B, 819 (2021) · Zbl 07409724 · doi:10.1016/j.physletb.2021.136429
[265] Tamburini, F.; Feleppa, F.; Thidé, B., Constraining the Generalized Uncertainty Principle with the light twisted by rotating Black Holes and M87*, Phys. Lett. B, 826 (2022) · doi:10.1016/j.physletb.2022.136894
[266] Carvalho, I. D D.; Alencar, G.; Muniz, C. R., Gravitational bending angle with finite distances by Casimir wormholes, Int. J. Mod. Phys. D, 31 (2022) · doi:10.1142/S0218271822500110
[267] Nozari, K.; Fazlpour, B., Generalized uncertainty principle, modified dispersion relations and early universe thermodynamics, Gen. Relativ. Gravit., 38, 1661-79 (2006) · Zbl 1133.83416 · doi:10.1007/s10714-006-0331-0
[268] Tawfik, A.; Magdy, H.; Ali, A. F., Effects of quantum gravity on the inflationary parameters and thermodynamics of the early Universe, Gen. Relativ. Gravit., 45, 1227-46 (2012) · Zbl 1266.85011 · doi:10.1007/s10714-013-1522-0
[269] Li, Z-H, Energy distribution of massless particles on Black Hole backgrounds with generalized uncertainty principle, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.084013
[270] Vagenas, E. C.; Ali, A. F.; Alshal, H., GUP and the no-cloning theorem, Eur. Phys. J. C, 79, 276 (2018) · doi:10.1140/epjc/s10052-019-6789-1
[271] Wang, P.; Yang, H.; Zhang, X., Quantum gravity effects on statistics and compact star configurations, J. High Energy Phys., JHEP08(2010)043 (2010) · Zbl 1291.83117 · doi:10.1007/JHEP08(2010)043
[272] Wang, P.; Yang, H.; Zhang, X., Quantum gravity effects on compact star cores, Phys. Lett. B, 718, 265-9 (2011) · doi:10.1016/j.physletb.2012.10.071
[273] Rashidi, R., Generalized uncertainty principle removes the Chandrasekhar limit, Ann. Phys., NY, 374, 434-43 (2015) · doi:10.1016/j.aop.2016.09.005
[274] Rama, S. K., Some consequences of the generalised uncertainty principle: statistical mechanical, cosmological and varying speed of light, Phys. Lett. B, 519, 103-10 (2001) · Zbl 0972.82011 · doi:10.1016/S0370-2693(01)01091-7
[275] Nozari, K.; Mehdipour, S. H., Implications of minimal length scale on the statistical mechanics of ideal gas, Chaos Solitons Fractals, 32, 1637-44 (2006) · doi:10.1016/j.chaos.2006.09.019
[276] Ali, A. F., Minimal length in quantum gravity, equivalence principle and holographic entropy bound, Class. Quantum Grav., 28 (2011) · Zbl 1211.83012 · doi:10.1088/0264-9381/28/6/065013
[277] Vakili, B.; Gorji, M. A., Thermostatistics with minimal length uncertainty relation, J. Stat. Mech. (2012) · Zbl 1456.81256 · doi:10.1088/1742-5468/2012/10/P10013
[278] Abbasiyan-Motlaq, M.; Pedram, P., The minimal length and the quantum partition functions, J. Stat. Mech. (2014) · doi:10.1088/1742-5468/2014/08/P08002
[279] Farag Ali, A.; Moussa, M., Towards thermodynamics with generalized uncertainty principle, Adv. High Energy Phys., 2014, 1-7 (2014) · Zbl 1425.81063 · doi:10.1155/2014/629148
[280] Mathew, A.; Nandy, M. K., Effect of minimal length uncertainty on the mass-radius relation of white dwarfs, Ann. Phys., NY, 393, 184-205 (2017) · doi:10.1016/j.aop.2018.04.008
[281] Vagenas, E. C.; Ali, A. F.; Hemeda, M.; Alshal, H., Linear and quadratic GUP, Liouville theorem, cosmological constant and Brick Wall entropy, Eur. Phys. J. C, 79, 398 (2019) · doi:10.1140/epjc/s10052-019-6908-z
[282] Shababi, H.; Ourabah, K., Non-Gaussian statistics from the generalized uncertainty principle, Eur. Phys. J. Plus, 135, 697 (2020) · doi:10.1140/epjp/s13360-020-00726-9
[283] Hamil, B.; Lütfüoğlu, B. C., New higher-order generalized uncertainty principle: applications, Int. J. Theor. Phys., 60, 2790-803 (2020) · Zbl 1528.81237 · doi:10.1007/s10773-021-04853-6
[284] Luciano, G. G., Tsallis statistics and generalized uncertainty principle, Eur. Phys. J. C, 81, 672 (2021) · doi:10.1140/epjc/s10052-021-09486-x
[285] Moradpour, H.; Aghababaei, S.; Ziaie, A. H., A note on effects of generalized and extended uncertainty principles on Jüttner Gas, Symmetry, 13, 213 (2021) · doi:10.3390/sym13020213
[286] Luciano, G. G.; Giné, J., Baryogenesis in non-extensive Tsallis cosmology, Phys. Lett. B, 833 (2022) · Zbl 1510.83097 · doi:10.1016/j.physletb.2022.137352
[287] Jizba, P.; Lambiase, G.; Luciano, G. G.; Petruzziello, L., Decoherence limit of quantum systems obeying generalized uncertainty principle: new paradigm for Tsallis thermostatistics, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.L121501
[288] Conti, C., Quantum gravity simulation by nonparaxial nonlinear optics, Phys. Rev. A, 89 (2014) · doi:10.1103/PhysRevA.89.061801
[289] Braidotti, M. C.; Musslimani, Z. H.; Conti, C., Generalized uncertainty principle and analogue of quantum gravity in optics, Phys. D, 338, 34-41 (2016) · doi:10.1016/j.physd.2016.08.001
[290] Iorio, A.; Pais, P.; Elmashad, I. A.; Ali, A. F.; Faizal, M.; Abou-Salem, L. I., Generalized Dirac structure beyond the linear regime in graphene, Int. J. Mod. Phys. D, 27 (2017) · Zbl 1430.81095 · doi:10.1142/S0218271818500803
[291] Iorio, A., Analog hep-th, on Dirac materials and in general, p 203 (2020)
[292] Iorio, A.; Ivetić, B.; Mignemi, S.; Pais, P., Three “layers” of graphene monolayer and their analog generalized uncertainty principles, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.116011
[293] Iorio, A.; Ivetić, B.; Mignemi, S.; Pais, P., Shadows of new physics on Dirac materials, analog GUPs and other amusements, J. Phys.: Conf. Ser., 2533 (2023) · doi:10.1088/1742-6596/2533/1/012021
[294] Hossenfelder, S., Minimal length scale scenarios for quantum gravity, Living Rev. Relativ., 16, 2 (2012) · Zbl 1320.83004 · doi:10.12942/lrr-2013-2
[295] Tawfik, A. N.; Diab, A. M., Generalized uncertainty principle: approaches and applications, Int. J. Mod. Phys. D, 23 (2014) · Zbl 1305.81005 · doi:10.1142/S0218271814300250
[296] Amelino-Camelia, G.; Astuti, V., Theory and phenomenology of relativistic corrections to the Heisenberg principle (2022)
[297] Casadio, R.; Scardigli, F., Generalized uncertainty principle, classical mechanics and general relativity, Phys. Lett. B, 807 (2020) · Zbl 1473.81089 · doi:10.1016/j.physletb.2020.135558
[298] Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L., Relative locality and the soccer ball problem, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.087702
[299] Bosso, P.; Petruzziello, L.; Wagner, F., The minimal length: a cut-off in disguise?, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.126009
[300] Amelino-Camelia, G., Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D, 11, 35-60 (2002) · Zbl 1062.83500 · doi:10.1142/S0218271802001330
[301] Magueijo, J.; Smolin, L., Lorentz invariance with an invariant energy scale, Phys. Rev. Lett., 88 (2001) · doi:10.1103/PhysRevLett.88.190403
[302] Bosso, P., Space and time transformations with a minimal length, Class. Quantum Grav., 40 (2023) · Zbl 1518.83064 · doi:10.1088/1361-6382/acb4d5
[303] Hossenfelder, S., The Soccer-Ball problem, SIGMA, 10, 74 (2014) · Zbl 1296.83007 · doi:10.3842/SIGMA.2014.074
[304] Gomes, A. H., Constraining GUP models using limits on SME coefficients, Class. Quantum Grav., 39 (2022) · Zbl 1510.83028 · doi:10.1088/1361-6382/ac9ae5
[305] Kothawala, D., Minimal length and small scale structure of spacetime, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.104029
[306] Kothawala, D.; Padmanabhan, T., Grin of the Cheshire cat: entropy density of spacetime as a relic from quantum gravity, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.124060
[307] Padmanabhan, T.; Chakraborty, S.; Kothawala, D., Spacetime with zero point length is two-dimensional at the Planck scale, Gen. Relativ. Gravit., 48, 55 (2015) · Zbl 1381.83037 · doi:10.1007/s10714-016-2053-2
[308] Lake, M. J.; Miller, M.; Ganardi, R. F.; Liu, Z.; Liang, S-D; Paterek, T., Generalised uncertainty relations from superpositions of geometries, Class. Quantum Grav., 36 (2018) · Zbl 1477.83031 · doi:10.1088/1361-6382/ab2160
[309] Lake, M. J.; Miller, M.; Liang, S-D, Generalised uncertainty relations for angular momentum and spin in quantum geometry, Universe, 6, 56 (2019) · doi:10.3390/universe6040056
[310] Lake, M. J., A solution to the soccer ball problem for generalised uncertainty relations, Ukr. J. Phys., 64, 1036-41 (2019) · doi:10.15407/ujpe64.11.1036
[311] Lake, M. J., A new approach to generalised uncertainty relations (2020)
[312] Dabrowski, M. P.; Wagner, F., Asymptotic generalized extended uncertainty principle, Eur. Phys. J. C, 80, 676 (2020) · doi:10.1140/epjc/s10052-020-8250-x
[313] Petruzziello, L.; Illuminati, F., Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale, Nat. Commun., 12, 4449 (2020) · doi:10.1038/s41467-021-24711-7
[314] Wagner, F., Relativistic extended uncertainty principle from spacetime curvature, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.025005
[315] Schrödinger, E., Zum Heisenbergschen Unschärfeprinzip, Sitz.ber., Preuss. Akad. Wiss. Phys. Klasse, 14, 296-303 (1930) · JFM 56.0754.05
[316] Robertson, H. P., The uncertainty principle, Phys. Rev., 34, 163-4 (1929) · doi:10.1103/PhysRev.34.163
[317] Wagner, F., Reinterpreting deformations of the Heisenberg algebra, Eur. Phys. J. C, 83, 154 (2023) · doi:10.1140/epjc/s10052-023-11298-0
[318] Herkenhoff Gomes, A., On the algebraic approach to GUP in anisotropic space, Class. Quantum Grav., 40 (2023) · Zbl 1519.83032 · doi:10.1088/1361-6382/acb9cc
[319] Wagner, F., Generalized uncertainty principle or curved momentum space?, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.126010
[320] Chang, L. N.; Minic, D.; Okamura, N.; Takeuchi, T., The effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.125028
[321] Abdelkhalek, K.; Chemissany, W.; Fiedler, L.; Mangano, G.; Schwonnek, R., Optimal uncertainty relations in a modified Heisenberg algebra, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.123505
[322] Segreto, S.; Montani, G., Extended GUP formulation and the role of momentum cut-off, Eur. Phys. J. C, 83, 385 (2023) · doi:10.1140/epjc/s10052-023-11480-4
[323] Detournay, S.; Gabriel, C.; Spindel, P., About maximally localized states in quantum mechanics, Phys. Rev. D, 66 (2002) · doi:10.1103/PhysRevD.66.125004
[324] Bernardo, R. C S.; Esguerra, J. P H., Maximally-localized position, Euclidean path-integral and thermodynamics in GUP quantum mechanics, Ann. Phys., NY, 391, 293-311 (2018) · Zbl 1384.81063 · doi:10.1016/j.aop.2018.02.015
[325] Gomes, A. H., Remarks on the quasi-position representation in models of generalized uncertainty principle (2023)
[326] Newton, T. D.; Wigner, E. P., Localized states for elementary systems, Rev. Mod. Phys., 21, 400-6 (1949) · Zbl 0036.26704 · doi:10.1103/RevModPhys.21.400
[327] Wagner, F., Quantum-spacetime effects on nonrelativistic Schrödinger evolution (2023)
[328] Quesne, C.; Tkachuk, V. M., Composite system in deformed space with minimal length, Phys. Rev. A, 81 (2010) · doi:10.1103/PhysRevA.81.012106
[329] Amelino-Camelia, G., Challenge to macroscopic probes of quantum spacetime based on noncommutative geometry, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.101301
[330] Benczik, S.; Chang, L. N.; Minic, D.; Okamura, N.; Rayyan, S.; Takeuchi, T., Short distance vs. long distance physics: the classical limit of the minimal length uncertainty relation, Phys. Rev. D, 66 (2002) · doi:10.1103/PhysRevD.66.026003
[331] Chashchina, O. I.; Sen, A.; Silagadze, Z. K., On deformations of classical mechanics due to Planck-scale physics, Int. J. Mod. Phys. D, 29 (2019) · Zbl 1443.81003 · doi:10.1142/S0218271820500704
[332] Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L., The principle of relative locality, Phys. Rev. D, 84 (2011) · Zbl 1263.83064 · doi:10.1103/PhysRevD.84.084010
[333] Wagner, Fet al.Nonrelativistic quantum dynamics on planck-scale deformed cotangent bundles(in preparation)
[334] Muga, J.; Mayato, R. S.; Egusquiza, I., Time in Quantum Mechanics (Lecture Notes in Physics vol 734) (2008), Springer · Zbl 1130.81006
[335] Pauli, W.; Bethe, H., Die allgemeinen Prinzipien der Wellenmechanik, Quantentheorie, pp 83-272 (1933), Springer · Zbl 0007.13504
[336] Srinivas, M. D.; Vijayalakshmi, R., The ‘time of occurrence’ in quantum mechanics, Pramana, 16, 173-99 (1981) · doi:10.1007/BF02848181
[337] Padmanabhan, T., Quantum Field Theory (2016), Springer International Publishing · Zbl 0914.58043
[338] Meljanac, S.; Meljanac, D.; Samsarov, A.; Stojić, M., Kappa-deformed Snyder spacetime, Mod. Phys. Lett. A, 25, 579-90 (2010) · Zbl 1188.83068 · doi:10.1142/S0217732310032652
[339] Battisti, M. V.; Meljanac, S., Scalar field theory on non-commutative snyder space-time, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.024028
[340] Meljanac, S.; Meljanac, D.; Samsarov, A.; Stojić, M., Kappa Snyder deformations of Minkowski spacetime, realizations and Hopf algebra, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.065009
[341] Meljanac, D.; Meljanac, S.; Mignemi, S.; Pikutić, D.; Štrajn, R., Twist for snyder space, Eur. Phys. J. C, 78, 194 (2018) · doi:10.1140/epjc/s10052-018-5657-8
[342] Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R. D., Space-time as a causal set, Phys. Rev. Lett., 59, 521-4 (1987) · doi:10.1103/PhysRevLett.59.521
[343] Rideout, D. P.; Sorkin, R. D., A classical sequential growth dynamics for causal sets, Phys. Rev. D, 61 (2000) · doi:10.1103/PhysRevD.61.024002
[344] Sorkin, R. D.; Gomberoff, A.; Marolf, D., Causal sets: discrete gravity, Lectures on Quantum Gravity, 305-27 (2005), Springer · doi:10.1007/0-387-24992-3_7
[345] Surya, S., The causal set approach to quantum gravity, Living Rev. Relativ., 22, 5 (2019) · Zbl 1442.83029 · doi:10.1007/s41114-019-0023-1
[346] Kempf, A., Quantum groups and quantum field theory with nonzero minimal uncertainties in positions and momenta, Czechoslov. J. Phys., 44, 1041-8 (1994) · doi:10.1007/BF01690456
[347] Kempf, A., On quantum field theory with nonzero minimal uncertainties in positions and momenta, J. Math. Phys., 38, 1347-72 (1996) · Zbl 0872.58009 · doi:10.1063/1.531814
[348] Nouicer, K., Casimir effect in the presence of minimal lengths, J. Phys. A: Math. Gen., 38, 10027-35 (2005) · Zbl 1079.81065 · doi:10.1088/0305-4470/38/46/009
[349] Frassino, A. M.; Panella, O., The Casimir effect in minimal length theories based on a generalized uncertainity principle, Phys. Rev. D, 85 (2011) · doi:10.1103/PhysRevD.85.045030
[350] Adler, R. J.; Santiago, D. I., On a generalization in quantum theory: is \(####\) constant? (1999)
[351] Nozari, K.; Karami, M., Minimal length and generalized Dirac equation, Mod. Phys. Lett. A, 20, 3095-104 (2005) · Zbl 1082.83509 · doi:10.1142/S0217732305018517
[352] Quesne, C.; Tkachuk, V. M., Lorentz-covariant deformed algebra with minimal length, Czech. J. Phys., 56, 1269-74 (2006) · Zbl 1109.81045 · doi:10.1007/s10582-006-0436-4
[353] Kober, M., Gauge theories under incorporation of a generalized uncertainty principle, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.085017
[354] Kober, M., Electroweak theory with a minimal length, Int. J. Mod. Phys. A, 26, 4251-85 (2011) · Zbl 1247.81631 · doi:10.1142/S0217751X11054413
[355] Moayedi, S. K.; Setare, M. R.; Moayeri, H., Formulation of the spinor field in the presence of a minimal length based on the Quesne-Tkachuk algebra, Int. J. Mod. Phys. A, 26, 4981-90 (2011) · Zbl 1247.83056 · doi:10.1142/S0217751X11054802
[356] Pedram, P., Dirac particle in gravitational quantum mechanics, Phys. Lett. B, 702, 295-8 (2011) · doi:10.1016/j.physletb.2011.07.014
[357] Moayedi, S. K.; Setare, M. R.; Khosropour, B., Formulation of electrodynamics with an external source in the presence of a minimal measurable length, Adv. High Energy Phys., 2013 (2013) · Zbl 1328.81023 · doi:10.1155/2013/657870
[358] Faizal, M.; Majumder, B., Incorporation of Generalized Uncertainty Principle into Lifshitz Field Theories, Ann. Phys., NY, 357, 49-58 (2014) · Zbl 1343.81168 · doi:10.1016/j.aop.2015.03.022
[359] Bosso, P.; Das, S.; Todorinov, V., Quantum field theory with the generalized uncertainty principle II: quantum electrodynamics, Ann. Phys., NY, 424 (2020) · Zbl 1453.81060 · doi:10.1016/j.aop.2020.168350
[360] Matsuo, T.; Shibusa, Y., Quantization of fields based on generalized uncertainty principle, Mod. Phys. Lett. A, 21, 1285-96 (2005) · Zbl 1098.81828 · doi:10.1142/S0217732306020639
[361] Kempf, A., On path integration on noncommutative geometries, Banach Center Publications 40.1, pp 379-86 (1997) · Zbl 0890.46050
[362] Kober, M., Generalized quantization principle in canonical quantum gravity and application to quantum cosmology, Int. J. Mod. Phys. A, 27 (2011) · Zbl 1260.83041 · doi:10.1142/S0217751X12501060
[363] Husain, V.; Kothawala, D.; Seahra, S. S., Generalized uncertainty principles and quantum field theory, Phys. Rev. D, 87 (2012) · doi:10.1103/PhysRevD.87.025014
[364] Bojowald, M.; Paily, G. M., Deformed general relativity, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.044044
[365] Assanioussi, M.; Dapor, A.; Lewandowski, J., Rainbow metric from quantum gravity, Phys. Lett. B, 751, 302-5 (2015) · doi:10.1016/j.physletb.2015.10.043
[366] Brahma, S.; Ronco, M., Constraining the loop quantum gravity parameter space from phenomenology, Phys. Lett. B, 778, 184-9 (2018) · doi:10.1016/j.physletb.2018.01.023
[367] Freidel, L.; Livine, E. R., 3D quantum gravity and effective noncommutative quantum field theory, Phys. Rev. Lett., 96 (2006) · Zbl 1228.83047 · doi:10.1103/PhysRevLett.96.221301
[368] Freidel, L.; Livine, E. R., Ponzano-Regge model revisited III: feynman diagrams and effective field theory, Class. Quantum Grav., 23, 2021-62 (2006) · Zbl 1091.83503 · doi:10.1088/0264-9381/23/6/012
[369] Amelino-Camelia, G., Planck-scale soccer-ball problem: a case of mistaken identity, Entropy, 19, 400 (2014) · doi:10.3390/e19080400
[370] Amelino-Camelia, G.; Smolin, L.; Starodubtsev, A., Quantum symmetry, the cosmological constant and Planck scale phenomenology, Class. Quantum Grav., 21, 3095-110 (2003) · Zbl 1061.83025 · doi:10.1088/0264-9381/21/13/002
[371] Hossenfelder, S., Multi-particle states in deformed special relativity, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.105005
[372] Amelino-Camelia, G.; Astuti, V.; Palmisano, M.; Ronco, M., Multi-particle systems in quantum spacetime and a novel challenge for center-of-mass motion, Int. J. Mod. Phys. D, 30 (2020) · Zbl 1466.83064 · doi:10.1142/S0218271821500462
[373] Pikovski, I.; Vanner, M. R.; Aspelmeyer, M.; Kim, M. S.; Brukner, Č., Probing Planck-scale physics with quantum optics, Nat. Phys., 8, 393-7 (2011) · doi:10.1038/nphys2262
[374] Bekenstein, J. D., Is a tabletop search for Planck scale signals feasible?, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.124040
[375] Kumar, S. P.; Plenio, M. B., On quantum gravity tests with composite particles, Nat. Commun., 11, 3900 (2019) · doi:10.1038/s41467-020-17518-5
[376] Blasone, M.; Lambiase, G.; Luciano, G. G.; Petruzziello, L.; Scardigli, F., Heuristic derivation of the Casimir effect from generalized uncertainty principle, J. Phys. Conf. Ser., 1275 (2019) · doi:10.1088/1742-6596/1275/1/012024
[377] Ong, Y. C., Schwinger pair production and the extended uncertainty principle: can heuristic derivations be trusted?, Eur. Phys. J. C, 80, 777 (2020) · doi:10.1140/epjc/s10052-020-8363-2
[378] Mignemi, S., Extended uncertainty principle and the geometry of (anti)-de Sitter space, Mod. Phys. Lett. A, 25, 1697-703 (2009) · Zbl 1193.83033 · doi:10.1142/S0217732310033426
[379] Nozari, K.; Pedram, P.; Molkara, M., Minimal length, maximal momentum and the entropic force law, Int. J. Theor. Phys., 51, 1268-75 (2011) · Zbl 1242.83043 · doi:10.1007/s10773-011-1002-9
[380] Dabrowski, M. P.; Wagner, F., Extended uncertainty principle for Rindler and cosmological horizons, Eur. Phys. J. C, 79, 716 (2019) · doi:10.1140/epjc/s10052-019-7232-3
[381] Luciano, G. G.; Petruzziello, L., GUP parameter from maximal acceleration, Eur. Phys. J. C, 79, 283 (2019) · doi:10.1140/epjc/s10052-019-6805-5
[382] Nicolini, P.; Rinaldi, M., A Minimal length versus the Unruh effect, Phys. Lett. B, 695, 303-6 (2011) · doi:10.1016/j.physletb.2010.10.051
[383] Majhi, B. R.; Vagenas, E. C., Modified dispersion relation, photon’s velocity and unruh effect, Phys. Lett. B, 725, 477-80 (2013) · Zbl 1364.81224 · doi:10.1016/j.physletb.2013.07.039
[384] Bisognano, J. J.; Wichmann, E. H., On the duality condition for quantum fields, J. Math. Phys., 17, 303-21 (1976) · doi:10.1063/1.522898
[385] Scardigli, F., Some heuristic semi-classical derivations of the Planck length, the Hawking effect and the Unruh effect, ll Nuovo Cim. B, 110, 1029-34 (1995) · doi:10.1007/BF02726152
[386] Hai-Xia, Z.; Huai-Fan, Li; Shuang-Qi, H.; Ren, Z., Generalized uncertainty principle and correction value to the Black Hole entropy, Commun. Theor. Phys., 48, 465-8 (2006) · doi:10.1088/0253-6102/48/3/017
[387] Parikh, M. K.; Wilczek, F., Hawking radiation as tunneling, Phys. Rev. Lett., 85, 5042-5 (2000) · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[388] Padmanabhan, T., Thermodynamical aspects of gravity: new insights, Rept. Prog. Phys., 73 (2010) · doi:10.1088/0034-4885/73/4/046901
[389] Contreras, E.; Villalba, F.; Bargue no, P., Effective geometries and generalized uncertainty principle corrections to the Bekenstein-Hawking entropy, Europhys. Lett., 114 (2016) · doi:10.1209/0295-5075/114/50009
[390] Bina, A.; Jalalzadeh, S.; Moslehi, A., Quantum Black Hole in the generalized uncertainty principle framework, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.023528
[391] Majumder, B., Quantum Black Hole and the modified uncertainty principle, Phys. Lett. B, 701, 384-7 (2011) · doi:10.1016/j.physletb.2011.05.076
[392] Carr, B.; Modesto, L.; Prémont-Schwarz, I., Generalized uncertainty principle and self-dual Black Holes (2011)
[393] Carr, B. J., The Black Hole uncertainty principle correspondence, 1st Karl Schwarzschild Meeting on Gravitational Physics (Springer Proceedings in Physics), vol 170, pp 159-67 (2014) · Zbl 1334.83042
[394] Ong, Y. C., A critique on some aspects of GUP effective metric, Eur. Phys. J. C, 83, 209 (2023) · doi:10.1140/epjc/s10052-023-11360-x
[395] Slawny, J., Bound states of hydrogen atom in a theory with minimal length uncertainty relations, J. Math. Phys., 48 (2007) · Zbl 1144.81413 · doi:10.1063/1.2423221
[396] Chang, L. N., On the minimal length uncertainty relation and the foundations of string theory, Adv. High Energy Phys., 2011 (2011) · Zbl 1234.81093 · doi:10.1155/2011/493514
[397] Carr, B. J.; Mureika, J.; Nicolini, P., Sub-Planckian Black Holes and the generalized uncertainty principle, J. High Energy Phys., JHEP07(2015)052 (2015) · Zbl 1387.83042 · doi:10.1007/JHEP07(2015)052
[398] Evans, L.; Bryant, P., LHC machine, J. Instrum., 3 (2008) · doi:10.1088/1748-0221/3/08/S08001
[399] Campbell, W. M., Improved constraints on the minimum length with a macroscopic low loss phonon cavity (2023)
[400] Bushev, P. A.; Bourhill, J.; Goryachev, M.; Kukharchyk, N.; Ivanov, E.; Galliou, S.; Tobar, M.; Danilishin, S., Testing of generalized uncertainty principle with macroscopic mechanical oscillators and pendulums, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.066020
[401] Bawaj, M., Probing deformed commutators with macroscopic harmonic oscillators, Nat. Commun., 6, 7503 (2014) · doi:10.1038/ncomms8503
[402] Das, S.; Mann, R. B., Planck scale effects on some low energy quantum phenomena, Phys. Lett. B, 704, 596-9 (2011) · doi:10.1016/j.physletb.2011.09.056
[403] Ali, A. F.; Das, S.; Vagenas, E. C., A proposal for testing Quantum Gravity in the lab, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.044013
[404] Gao, D.; Zhan, M., Constraining the generalized uncertainty principle with cold atoms, Phys. Rev. A, 94 (2016) · doi:10.1103/PhysRevA.94.013607
[405] Khodadi, M., Probing Planck scale spacetime by cavity opto-atomic \(####Rb\) interferometry, Progr. Theor. Exp. Phys., 2019, 053E03 (2018) · doi:10.1093/ptep/ptz039
[406] Marin, F., Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables, Nat. Phys., 9, 71-73 (2013) · doi:10.1038/nphys2503
[407] Marin, F., Investigation on Planck scale physics by the AURIGA gravitational bar detector, New J. Phys., 16 (2014) · doi:10.1088/1367-2630/16/8/085012
[408] Gao, D.; Wang, J.; Zhan, M., Constraining the generalized uncertainty principle with the atomic weak-equivalence-principle test, Phys. Rev. A, 95 (2017) · doi:10.1103/PhysRevA.95.042106
[409] Pacho, A.; Wojnar, A. (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.