×

Metastring theory and modular space-time. (English) Zbl 1388.81528

Summary: String theory is canonically accompanied with a space-time interpretation which determines S-matrix-like observables, and connects to the standard physics at low energies in the guise of local effective field theory. Recently, we have introduced a reformulation of string theory which does not rely on an a priori space-time interpretation or a pre-assumption of locality. This metastring theory is formulated in such a way that stringy symmetries (such as T-duality) are realized linearly. In this paper, we study metastring theory on a flat background and develop a variety of technical and interpretational ideas. These include a formulation of the moduli space of Lorentzian worldsheets, a careful study of the symplectic structure and consequently consistent closed and open boundary conditions, and the string spectrum and operator algebra. What emerges from these studies is a new quantum notion of space-time that we refer to as a quantum Lagrangian or equivalently a modular space-time. This concept embodies the standard tenets of quantum theory and implements in a precise way a notion of relative locality. The usual string backgrounds (non-compact space-time along with some toroidally compactified spatial directions) are obtained from modular space-time by a limiting procedure that can be thought of as a correspondence limit.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
81T20 Quantum field theory on curved space or space-time backgrounds

References:

[1] A. Cappelli, E. Castellani, F. Colomo and P. Di Vecchia, The birth of string theory, Cambridge University Press, Cambridge U.K. (2012) [INSPIRE].
[2] J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998) [INSPIRE]. · Zbl 1006.81521
[3] L. Freidel, R.G. Leigh and D. Minic, Born reciprocity in string theory and the nature of spacetime, Phys. Lett.B 730 (2014) 302 [arXiv:1307.7080] [INSPIRE]. · Zbl 1381.81097
[4] L. Freidel, R.G. Leigh and D. Minic, Quantum gravity, dynamical phase space and string theory, Int. J. Mod. Phys.D 23 (2014) 1442006 [arXiv:1405.3949] [INSPIRE].
[5] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev.D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].
[6] W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev.D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].
[7] W. Siegel, Manifest duality in low-energy superstrings, hep-th/9308133 [INSPIRE]. · Zbl 0844.58101
[8] O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP08 (2010) 008 [arXiv:1006.4823] [INSPIRE]. · Zbl 1291.81255
[9] C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP09 (2009) 090 [arXiv:0908.1792] [INSPIRE].
[10] O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP07 (2010) 016 [arXiv:1003.5027] [INSPIRE]. · Zbl 1290.81069
[11] C. Hull and B. Zwiebach, Double field theory, JHEP09 (2009) 099 [arXiv:0904.4664] [INSPIRE].
[12] B. Zwiebach, Double field theory, T-duality and Courant brackets, Lect. Notes Phys.851 (2012) 265 [arXiv:1109.1782] [INSPIRE]. · Zbl 1292.81122
[13] G. Aldazabal, D. Marques and C. Núñez, Double field theory: a pedagogical review, Class. Quant. Grav.30 (2013) 163001 [arXiv:1305.1907] [INSPIRE]. · Zbl 1273.83001
[14] D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory, Phys. Rept.566 (2014) 1 [arXiv:1306.2643] [INSPIRE].
[15] R. Blumenhagen, F. Hassler and D. Lüst, Double field theory on group manifolds, JHEP02 (2015) 001 [arXiv:1410.6374] [INSPIRE]. · Zbl 1388.81401
[16] N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math.54 (2003) 281 [math/0209099] [INSPIRE]. · Zbl 1076.32019
[17] M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE]. · Zbl 1235.32020
[18] Z.-J. Liu, A. WEinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom.45 (1997) 547 [dg-ga/9508013] [INSPIRE]. · Zbl 0885.58030
[19] G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, The principle of relative locality, Phys. Rev.D 84 (2011) 084010 [arXiv:1101.0931] [INSPIRE].
[20] L. Freidel and L. Smolin, Gamma ray burst delay times probe the geometry of momentum space, arXiv:1103.5626 [INSPIRE].
[21] M. Born, A suggestion for unifying quantum theory and relativity, Proc. Roy. Soc. LondonA 165 (1938) 291. · Zbl 0018.42906
[22] M. Born, Reciprocity theory of elementary particles, Rev. Mod. Phys.21 (1949) 463. · Zbl 0035.27206
[23] H.S. Snyder, Quantized space-time, Phys. Rev.71 (1947) 38 [INSPIRE]. · Zbl 0035.13101
[24] Y.A. Gol’fand, On the introduction of an “<Emphasis Type=”Italic“>elementary length” in the relativistic theory of elementary particles, Sov. Phys. JETP37 (1960) 356.
[25] L. Freidel and E.R. Livine, Effective 3D quantum gravity and non-commutative quantum field theory, Phys. Rev. Lett.96 (2006) 221301 [hep-th/0512113] [INSPIRE]. · Zbl 1228.83047
[26] L. Freidel and E.R. Livine, Ponzano-Regge model revisited III: Feynman diagrams and effective field theory, Class. Quant. Grav.23 (2006) 2021 [hep-th/0502106] [INSPIRE]. · Zbl 1091.83503
[27] S.B. Giddings and S.A. Wolpert, A triangulation of moduli space from light cone string theory, Commun. Math. Phys.109 (1987) 177 [INSPIRE]. · Zbl 0636.32012
[28] I.M. Krichever and S.P. Novikov, Virasoro type algebras, Riemann surfaces and strings in Minkowsky space, Funct. Anal. Appl.21 (1987) 294. · Zbl 0659.17012
[29] I.M. Krichever and S.P. Novikov, Algebras of Virasoro type, Riemann surfaces and the structure of soliton theory, Funct. Anal. Appl.21 (1987) 126 [Funkt. Anal. Pril.21 (1987) 47] [INSPIRE]. · Zbl 0634.17010
[30] S. Nakamura, A calculation of the orbifold Euler number of the moduli space of curves by a new cell decomposition of the Teichmüller space, Tokyo J. Math.23 (2000) 87. · Zbl 0960.30035
[31] G.W. Moore, Finite in all directions, hep-th/9305139 [INSPIRE].
[32] Y. Aharonov and D. Rohrlich, Quantum paradoxes: quantum theory for the perplexed, John Wiley & Sons, U.S.A. (2008). · Zbl 1081.81001
[33] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev.115 (1959) 485 [INSPIRE]. · Zbl 0099.43102
[34] Y. Aharonov and A. Casher, Topological quantum effects for neutral particles, Phys. Rev. Lett.53 (1984) 319 [INSPIRE].
[35] S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP01 (2004) 024 [hep-th/0208174] [INSPIRE]. · Zbl 1243.81156
[36] S. Hellerman and J. Walcher, Worldsheet CFTs for flat monodrofolds, hep-th/0604191 [INSPIRE].
[37] A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP09 (2003) 054 [hep-th/0210209] [INSPIRE].
[38] C.M. Hull, A geometry for non-geometric string backgrounds, JHEP10 (2005) 065 [hep-th/0406102] [INSPIRE].
[39] C.M. Hull, Doubled geometry and T-folds, JHEP07 (2007) 080 [hep-th/0605149] [INSPIRE].
[40] C.M. Hull and R.A. Reid-Edwards, Gauge symmetry, T-duality and doubled geometry, JHEP08 (2008) 043 [arXiv:0711.4818] [INSPIRE].
[41] G. Veneziano, A stringy nature needs just two constants, Europhys. Lett.2 (1986) 199 [INSPIRE].
[42] R. Penrose, On the gravitization of quantum mechanics 1: quantum state reduction, Found. Phys.44 (2014) 557 [INSPIRE]. · Zbl 1311.81009
[43] L. Freidel, R.G. Leigh and D. Minic, Quantization of the metastring, to appear. · Zbl 1388.81528
[44] V. Cruceanu et al., A survey on paracomplex geometry, Rocky Mountain J. Math.26 (1996) 83. · Zbl 0856.53049
[45] A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett.B 242 (1990) 163 [INSPIRE].
[46] A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys.B 350 (1991) 395 [INSPIRE].
[47] A.A. Tseytlin, Duality symmetric string theory and the cosmological constant problem, Phys. Rev. Lett.66 (1991) 545 [INSPIRE].
[48] R. Floreanini and R. Jackiw, Selfdual fields as charge density solitons, Phys. Rev. Lett.59 (1987) 1873 [INSPIRE].
[49] N. Woodhouse, Geometric quantization, Clarendon Press, New York U.S.A. (1991) [INSPIRE]. · Zbl 0747.58004
[50] M. Blau, Symplectic geometry and geometric quantisation, http://www.blau.itp.unibe.ch/lecturesGQ.ps.gz, unpublished.
[51] V.G. Drinfeld, Quantum groups, in Proceedings of the ICM, Rhode Island U.S.A. (1987), pg. 798.
[52] S. Majid, Doubles of quasitriangular Hopf algebras, Commun. Alg.19 (1991) 3061. · Zbl 0767.16014
[53] S. Majid, Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Alg.130 (1990) 17. · Zbl 0694.16008
[54] S. Majid, Hopf algebras for physics at the Planck scale, Class. Quant. Grav.5 (1988) 1587 [INSPIRE]. · Zbl 0672.16009
[55] L. Freidel and S. Majid, Noncommutative harmonic analysis, sampling theory and the Duflo map in 2 + 1 quantum gravity, Class. Quant. Grav.25 (2008) 045006 [hep-th/0601004] [INSPIRE]. · Zbl 1190.83070
[56] I.A. Batalin, E.S. Fradkin and T.E. Fradkina, Another version for operatorial quantization of dynamical systems with irreducible constraints, Nucl. Phys.B 314 (1989) 158 [INSPIRE].
[57] I.A. Batalin and E.S. Fradkin, Formal path integral for theories with noncanonical commutation relations, Mod. Phys. Lett.A 4 (1989) 1001 [INSPIRE]. · Zbl 0967.81506
[58] I. Bars, Gauge symmetry in phase space, consequences for physics and spacetime, Int. J. Mod. Phys.A 25 (2010) 5235 [arXiv:1004.0688] [INSPIRE]. · Zbl 1208.81141
[59] L.N. Chang, D. Minic and T. Takeuchi, Quantum gravity, dynamical energy-momentum space and vacuum energy, Mod. Phys. Lett.A 25 (2010) 2947 [arXiv:1004.4220] [INSPIRE]. · Zbl 1202.83041
[60] L.N. Chang, Z. Lewis, D. Minic and T. Takeuchi, On the minimal length uncertainty relation and the foundations of string theory, Adv. High Energy Phys.2011 (2011) 493514 [arXiv:1106.0068] [INSPIRE]. · Zbl 1234.81093
[61] L. Freidel, R.G. Leigh and D. Minic, The curved metastring, to appear. · Zbl 1388.81528
[62] D.S. Berman, N.B. Copland and D.C. Thompson, Background field equations for the duality symmetric string, Nucl. Phys.B 791 (2008) 175 [arXiv:0708.2267] [INSPIRE]. · Zbl 1225.81111
[63] D.S. Berman and D.C. Thompson, Duality symmetric strings, dilatons and O(d, d) effective actions, Phys. Lett.B 662 (2008) 279 [arXiv:0712.1121] [INSPIRE]. · Zbl 1282.81140
[64] S.D. Avramis, J.-P. Derendinger and N. Prezas, Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys.B 827 (2010) 281 [arXiv:0910.0431] [INSPIRE]. · Zbl 1203.81131
[65] J. Polchinski, Evaluation of the one loop string path integral, Commun. Math. Phys.104 (1986) 37 [INSPIRE]. · Zbl 0606.58014
[66] G.W. Moore, Modular forms and two loop string physics, Phys. Lett.B 176 (1986) 369 [INSPIRE].
[67] L. Freidel, R.G. Leigh and D. Minic, The beta functions of metastring theory, to appear. · Zbl 1388.81528
[68] K. Sfetsos, K. Siampos and D.C. Thompson, Renormalization of Lorentz non-invariant actions and manifest T-duality, Nucl. Phys.B 827 (2010) 545 [arXiv:0910.1345] [INSPIRE]. · Zbl 1203.81151
[69] E. Witten, The Feynman iϵ in string theory, JHEP04 (2015) 055 [arXiv:1307.5124] [INSPIRE].
[70] S. Mandelstam, Lorentz properties of the three-string vertex, Nucl. Phys.B 83 (1974) 413 [INSPIRE].
[71] S. Mandelstam, Interacting string picture of the Neveu-Schwarz-Ramond model, Nucl. Phys.B 69 (1974) 77 [INSPIRE].
[72] S. Mandelstam, Interacting string picture of dual resonance models, Nucl. Phys.B 64 (1973) 205 [INSPIRE].
[73] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Manifestly covariant field theory of interacting string, Phys. Lett.B 172 (1986) 186 [INSPIRE].
[74] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Manifestly covariant field theory of interacting string. 2, Phys. Lett.B 172 (1986) 195 [INSPIRE].
[75] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Pregeometrical string field theory: creation of space-time and motion, Phys. Lett.B 175 (1986) 138 [INSPIRE].
[76] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Covariant string field theory, Phys. Rev.D 34 (1986) 2360 [INSPIRE].
[77] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Gauge invariant action of interacting string field, Nucl. Phys.B 283 (1987) 433 [INSPIRE].
[78] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Loop amplitudes in covariant string field theory, Phys. Rev.D 35 (1987) 1356 [INSPIRE].
[79] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Covariant string field theory. 2, Phys. Rev.D 35 (1987) 1318 [INSPIRE].
[80] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Gauge string field theory for torus compactified closed string, Prog. Theor. Phys.77 (1987) 443 [INSPIRE].
[81] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, BRS invariant vertex of Neveu-Schwarz-Ramond superstring, Prog. Theor. Phys.78 (1987) 453 [INSPIRE].
[82] T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory, Prog. Theor. Phys.87 (1992) 801 [hep-th/9201040] [INSPIRE].
[83] N. Ishibashi, Y. Baba and K. Murakami, D-branes and closed string field theory, Int. J. Mod. Phys.A 23 (2008) 2220 [arXiv:0804.1876] [INSPIRE]. · Zbl 1146.81320
[84] H.B. Nielsen and M. Ninomiya, Our string field theory liberating left and right movers as constituent ‘objects’, arXiv:1212.3044 [INSPIRE]. · Zbl 1333.81352
[85] H.B. Nielsen and M. Ninomiya, Deriving Veneziano model in a novel string field theory solving string theory by liberating right and left movers, arXiv:1410.1048 [INSPIRE]. · Zbl 1333.81352
[86] L. Freidel, D. Garner and S. Ramgoolam, On the permutation combinatorics of worldsheet moduli space, arXiv:1412.3979 [INSPIRE].
[87] R. Penner, Cell decomposition and compactification of Riemann’s moduli space in decorated Teichmüller theory, math/0306190.
[88] C. Crnkovic, Symplectic geometry and (super)Poincaré algebra in geometrical theories, Nucl. Phys.B 288 (1987) 419 [INSPIRE].
[89] C. Crnkovic, Symplectic geometry of the covariant phase space, superstrings and superspace, Class. Quant. Grav.5 (1988) 1557 [INSPIRE]. · Zbl 0665.53052
[90] K. Gawedzki, Classical origin of quantum group symmetries in Wess-Zumino-Witten conformal field theory, Commun. Math. Phys.139 (1991) 201 [INSPIRE]. · Zbl 0721.58045
[91] J. Kijowski, A finite-dimensional canonical formalism in the classical field theory, Commun. Math. Phys.30 (1973) 99 [INSPIRE].
[92] J. Kijowski and W. Szczyrba, A canonical structure for classical field theories, Commun. Math. Phys.46 (1976) 183 [INSPIRE]. · Zbl 0348.49017
[93] M.J. Bowick and S.G. Rajeev, String theory as the Kähler geometry of loop space, Phys. Rev. Lett.58 (1987) 535 [Erratum ibid.58 (1987) 1158] [INSPIRE].
[94] M.J. Bowick and S.G. Rajeev, The holomorphic geometry of closed bosonic string theory and Diff S1/S1, Nucl. Phys.B 293 (1987) 348 [INSPIRE].
[95] H. Grosse and R. Wulkenhaar, Renormalization of ϕ4theory on noncommutative R4in the matrix base, Commun. Math. Phys.256 (2005) 305 [hep-th/0401128] [INSPIRE]. · Zbl 1075.82005
[96] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73 (2001) 977 [hep-th/0106048] [INSPIRE]. · Zbl 1205.81126
[97] A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept.244 (1994) 77 [hep-th/9401139] [INSPIRE].
[98] K.S. Narain, New heterotic string theories in uncompactified dimensions <10, Phys. Lett.B 169 (1986) 41 [INSPIRE].
[99] J.H. Conway and N. Sloane, Sphere packings, lattices and groups, Springer-Verlag, New York U.S.A. (1993). · Zbl 0785.11036
[100] P. Goddard and C.B. Thorn, Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model, Phys. Lett.B 40 (1972) 235 [INSPIRE].
[101] G.W. Moore, Symmetries and symmetry breaking in string theory, hep-th/9308052 [INSPIRE].
[102] L.J. Dixon, P.H. Ginsparg and J.A. Harvey, Beauty and the beast: superconformal symmetry in a monster module, Commun. Math. Phys.119 (1988) 221 [INSPIRE]. · Zbl 0657.17011
[103] F. Lizzi and R.J. Szabo, Duality symmetries and noncommutative geometry of string space-time, Commun. Math. Phys.197 (1998) 667 [hep-th/9707202] [INSPIRE]. · Zbl 0931.58010
[104] A. Giveon and A.D. Shapere, Gauge symmetries of the N = 2 string, Nucl. Phys.B 386 (1992) 43 [hep-th/9203008] [INSPIRE].
[105] M. Aschenbrenner and W. Bergweiler, Julia’s equation and differential transcendence, arXiv:1307.6381. · Zbl 1345.30029
[106] M. Schnabl, Wedge states in string field theory, JHEP01 (2003) 004 [hep-th/0201095] [INSPIRE]. · Zbl 1226.81228
[107] A.S. Losev, A. Marshakov and A.M. Zeitlin, On first order formalism in string theory, Phys. Lett.B 633 (2006) 375 [hep-th/0510065] [INSPIRE]. · Zbl 1247.81392
[108] N. Halmagyi, Non-geometric backgrounds and the first order string σ-model, arXiv:0906.2891 [INSPIRE].
[109] N. Halmagyi, Non-geometric string backgrounds and worldsheet algebras, JHEP07 (2008) 137 [arXiv:0805.4571] [INSPIRE].
[110] W. Schulgin and J. Troost, The algebra of diffeomorphisms from the world sheet, JHEP09 (2014) 146 [arXiv:1407.1385] [INSPIRE]. · Zbl 1333.81190
[111] T.J. Courant, Dirac manifolds, Trans. Amer. Math. Soc.319 (1990) 631. · Zbl 0850.70212
[112] Z.-J. Liu, A. WEinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom.45 (1997) 547 [dg-ga/9508013] [INSPIRE]. · Zbl 0885.58030
[113] H. Bursztyn, A brief introduction to Dirac manifolds, arXiv:1112.5037 [INSPIRE]. · Zbl 1293.53001
[114] M. Evans and B.A. Ovrut, Symmetry in string theory, Phys. Rev.D 39 (1989) 3016 [INSPIRE].
[115] M. Evans and B.A. Ovrut, Deformations of conformal field theories and symmetries of the string, Phys. Rev.D 41 (1990) 3149 [INSPIRE].
[116] M. Evans and I. Giannakis, Gauge covariant deformations, symmetries and free parameters of string theory, Phys. Rev.D 44 (1991) 2467 [INSPIRE].
[117] M. Evans, I. Giannakis and D.V. Nanopoulos, An infinite dimensional symmetry algebra in string theory, Phys. Rev.D 50 (1994) 4022 [hep-th/9401075] [INSPIRE].
[118] D. Berenstein and R.G. Leigh, Superstring perturbation theory and Ramond-Ramond backgrounds, Phys. Rev.D 60 (1999) 106002 [hep-th/9904104] [INSPIRE].
[119] D. Berenstein and R.G. Leigh, Quantization of superstrings in Ramond-Ramond backgrounds, Phys. Rev.D 63 (2001) 026004 [hep-th/9910145] [INSPIRE].
[120] K. Ranganathan, H. Sonoda and B. Zwiebach, Connections on the state space over conformal field theories, Nucl. Phys.B 414 (1994) 405 [hep-th/9304053] [INSPIRE]. · Zbl 1007.81543
[121] M. Cederwall, A. von Gussich and P. Sundell, Deformations in closed string theory: canonical formulation and regularization, Nucl. Phys.B 464 (1996) 117 [hep-th/9504112] [INSPIRE]. · Zbl 1004.81539
[122] A.M. Zeitlin, Formal Maurer-Cartan structures: from CFT to classical field equations, JHEP12 (2007) 098 [arXiv:0708.0955] [INSPIRE]. · Zbl 1246.81311
[123] A.M. Zeitlin, BRST, generalized Maurer-Cartan equations and CFT, Nucl. Phys.B 759 (2006) 370 [hep-th/0610208] [INSPIRE]. · Zbl 1116.81062
[124] A. Sen, On the background independence of string field theory, Nucl. Phys.B 345 (1990) 551 [INSPIRE].
[125] R.E. Borcherds, Generalized Kac-Moody algebras, J. Alg.115 (1988) 501. · Zbl 0644.17010
[126] R.E. Borcherds, A monster Lie algebra?, in Sphere packing, lattices and groups, chapter 30, J.H. Conway and N.J.A. Sloane eds., (1988), pg. 568 [Adv. Math.53 (1984) 75].
[127] R.E. Borcherds, Vertex algebras, Kac-Moody algebras, and the monster, Proc. Natl. Acad. Sci. U.S.A.83 (1986) 3068. · Zbl 0613.17012
[128] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebra and the monster, Pure Appl. Math.134, Academic Press, U.S.A. (1988). · Zbl 0674.17001
[129] J. Conway, The automorphism group of the 26-dimensional even unimodular Lorentzian lattice, J. Alg.80 (1983) 159. · Zbl 0508.20023
[130] J.H. Conway and N.J.A. Sloane, Lorentzian forms for the Leech lattice, Bull. Amer. Math. Soc.6 (1982) 215. · Zbl 0496.10022
[131] M. Evans and I. Giannakis, T duality in arbitrary string backgrounds, Nucl. Phys.B 472 (1996) 139 [hep-th/9511061] [INSPIRE]. · Zbl 1003.81542
[132] M. Dine, P.Y. Huet and N. Seiberg, Large and small radius in string theory, Nucl. Phys.B 322 (1989) 301 [INSPIRE].
[133] S.K. Ashok, R. Benichou and J. Troost, Conformal current algebra in two dimensions, JHEP06 (2009) 017 [arXiv:0903.4277] [INSPIRE].
[134] O. Hohm, W. Siegel and B. Zwiebach, Doubled α′-geometry, JHEP02 (2014) 065 [arXiv:1306.2970] [INSPIRE]. · Zbl 1333.83190
[135] W. Schulgin and J. Troost, Asymptotic symmetry groups and operator algebras, JHEP09 (2013) 135 [arXiv:1307.3423] [INSPIRE]. · Zbl 1342.83091
[136] F. Etayo, R. Santamarıa and U.R. Trías, The geometry of a bi-Lagrangian manifold, Diff. Geom. Appl.24 (2006) 33 [math/0403512] [INSPIRE]. · Zbl 1101.53047
[137] M. Forger and S.Z. Yepes, Lagrangian distributions and connections in symplectic geometry, arXiv:1202.5054 [INSPIRE]. · Zbl 1279.53076
[138] W. Taylor and B. Zwiebach, D-branes, tachyons and string field theory, hep-th/0311017 [INSPIRE]. · Zbl 1079.81058
[139] A. LeClair, M.E. Peskin and C.R. Preitschopf, String field theory on the conformal plane. 1. Kinematical principles, Nucl. Phys.B 317 (1989) 411 [INSPIRE].
[140] A. LeClair, M.E. Peskin and C.R. Preitschopf, String field theory on the conformal plane. 2. Generalized gluing, Nucl. Phys.B 317 (1989) 464 [INSPIRE].
[141] S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Cambridge U.K. (1995) [INSPIRE]. · Zbl 0959.81002
[142] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP02 (2000) 020 [hep-th/9912072] [INSPIRE]. · Zbl 0959.81108
[143] D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli, On the unitarity problem in space-time noncommutative theories, Phys. Lett.B 533 (2002) 178 [hep-th/0201222] [INSPIRE]. · Zbl 0994.81117
[144] H. Bozkaya et al., Space-time noncommutative field theories and causality, Eur. Phys. J.C 29 (2003) 133 [hep-th/0209253] [INSPIRE]. · Zbl 1030.81021
[145] D. Finkelstein and E. Rodriguez, Quantum time-space and gravity, in Quantum concepts in space and time, R. Penrose and C.J. Isham eds., Oxford University Press, New York U.S.A. (1986), pg. 1. · Zbl 0605.58008
[146] G.W. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys.123 (1989) 177 [INSPIRE]. · Zbl 0694.53074
[147] D.J. Gross and P.F. Mende, String theory beyond the Planck scale, Nucl. Phys.B 303 (1988) 407 [INSPIRE].
[148] D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett.B 197 (1987) 129 [INSPIRE].
[149] J.J. Atick and E. Witten, The Hagedorn transition and the number of degrees of freedom of string theory, Nucl. Phys.B 310 (1988) 291 [INSPIRE].
[150] E. Witten, Space-time and topological orbifolds, Phys. Rev. Lett.61 (1988) 670 [INSPIRE].
[151] A. Neitzke and C. Vafa, Topological strings and their physical applications, hep-th/0410178 [INSPIRE]. · Zbl 1132.81044
[152] G.W. Gibbons, Typical states and density matrices, J. Geom. Phys.8 (1992) 147 [INSPIRE]. · Zbl 0748.53049
[153] A. Ashtekar and T.A. Schilling, Geometrical formulation of quantum mechanics, gr-qc/9706069 [INSPIRE]. · Zbl 0976.53088
[154] V. Jejjala, M. Kavic and D. Minic, Time and M-theory, Int. J. Mod. Phys.A 22 (2007) 3317 [arXiv:0706.2252] [INSPIRE]. · Zbl 1200.83118
[155] V. Balasubramanian, J. de Boer and D. Minic, Holography, time and quantum mechanics, gr-qc/0211003 [INSPIRE]. · Zbl 1014.83045
[156] D. Minic and H.C. Tze, A general theory of quantum relativity, Phys. Lett.B 581 (2004) 111 [hep-th/0309239] [INSPIRE]. · Zbl 1246.83079
[157] D. Minic and H.C. Tze, Background independent quantum mechanics and gravity, Phys. Rev.D 68 (2003) 061501 [hep-th/0305193] [INSPIRE].
[158] C. Klimčík and P. Ševera, Dual non-Abelian duality and the Drinfeld double, Phys. Lett.B 351 (1995) 455 [hep-th/9502122] [INSPIRE].
[159] C. Klimčík and S. Parkhomenko, Monodromic strings, hep-th/0010084 [INSPIRE].
[160] I.R. Klebanov and L. Susskind, Continuum strings from discrete field theories, Nucl. Phys.B 309 (1988) 175 [INSPIRE].
[161] M. Karliner, I.R. Klebanov and L. Susskind, Size and shape of strings, Int. J. Mod. Phys.A 3 (1988) 1981 [INSPIRE].
[162] C.B. Thorn, Reformulating string theory with the 1/N expansion, hep-th/9405069 [INSPIRE].
[163] W. Taylor, M(atrix) theory: matrix quantum mechanics as a fundamental theory, Rev. Mod. Phys.73 (2001) 419 [hep-th/0101126] [INSPIRE]. · Zbl 1205.81015
[164] J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998) [INSPIRE]. · Zbl 1006.81521
[165] D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett.B 216 (1989) 41 [INSPIRE].
[166] D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from Planckian energy superstring collisions, Int. J. Mod. Phys.A 3 (1988) 1615 [INSPIRE].
[167] D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at Planckian energies, Phys. Lett.B 197 (1987) 81 [INSPIRE].
[168] E. Witten, Reflections on the fate of space-time, Phys. Today49N4 (1996) 24 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.