×

One-dimensional harmonic oscillator problem and its hidden \(SU(1,1)\) symmetry in the presence of a minimal length. (English) Zbl 1448.81371

Summary: The one-dimensional harmonic oscillator in the presence of a minimal length possesses a hidden \(SU(1,1)\) symmetry. This symmetry makes it possible to construct the deformed canonical coherent states. These states turn out to be ground states of the deformed dipolar coupling. Indeed, the coupling to the external field may be considered as a dipolar coupling of a charged dipole to an electric field in one dimension. The spectrum is constructed algebraically. The wave functions in the momentum space are then reported. We have found that the momentum probability density of order \(n\) possesses \(n+1\) vertices and these vertices of excited states disappear from \(n-1\) when the deformation parameter increases. So, the particle in these states loses its point nature and can even explore space. The Heisenberg uncertainty relation involving a non-zero minimal length induces then a finite lower bound to spatial localisation.

MSC:

81R30 Coherent states
81R12 Groups and algebras in quantum theory and relations with integrable systems
Full Text: DOI

References:

[1] Amati, D.; Ciafaloni, M.; Veneziano, G., Phys. Lett. B, 216, 41 (1989)
[2] Konishi, K.; Paffuti, G.; Provero, P., Phys. Lett. B, 234, 276 (1990)
[3] Hossenfelder, S., Class. Quantum Gravity, 23, 1815 (2006) · Zbl 1089.83004
[4] Kempf, A., J. Math. Phys., 38, 1344 (1997)
[5] Kempf, A., Phys. Rev. D, 55, 7909 (1997)
[6] Kempf, A.; Mangano, G.; Mann, R. B., Phys. Rev. D, 52, 1108 (1995)
[7] Hinrichsen, H.; Kempf, A., J. Math. Phys., 37, 2121-2137 (1996) · Zbl 0883.46049
[8] Magiore, M., Phys. Lett. B, 319, 83 (1993)
[9] Dadic, I.; Jonke, L.; Meljanac, S., Phys. Rev. D, 67, Article 087701 pp. (2003)
[10] Jana, T. K.; Roy, P., SIGMA, 5, Article 083 pp. (2009) · Zbl 1187.81119
[11] Nouicer, K., J. Math. Phys., 47, Article 122102 pp. (2006) · Zbl 1112.81003
[12] Nouicer, K., J. Phys. A, Math. Gen., 39, 5125 (2006) · Zbl 1091.81017
[13] Quesne, C., J. Phys. A, Math. Gen., 38, 1747-1765 (2005) · Zbl 1061.81023
[14] Hossenfelder, S., Living Rev. Relativ., 16, 2 (2013) · Zbl 1320.83004
[15] Bouaziz, D.; Bawin, M., Phys. Rev. A, 78, 32110-32118 (2008)
[16] Chang, L. N.; Lewis, Z.; Minic, D.; Takeuchi, T., Adv. High Energy Phys., 2011, Article 493514 pp. (2011) · Zbl 1234.81093
[17] Kothawala, D.; Sriramkumar, L.; Shankaranarayanan, S.; Padmanabhan, T., Phys. Rev. D, 80, Article 044005 pp. (2009)
[18] Pedram, P.; Nozari, K.; Taheri, S. H., J. High Energy Phys., 2011, Article 93 pp. (2011) · Zbl 1301.83015
[19] Jaynes, E. T.; Cummings, F. W., Proc. IEEE, 51, 89 (1963)
[20] Swanson, M. S., J. Math. Phys., 45, 585 (2004) · Zbl 1070.81053
[21] Zhang, Y-Z., J. Phys. A, Math. Theor., 46, Article 455302 pp. (2013) · Zbl 1278.81082
[22] Zhang, Y-Z., J. Math. Phys., 54, Article 102104 pp. (2013) · Zbl 1284.81361
[23] Hassanabadi, H.; Maghsoodi, E.; Ikot, Akpan N.; Zarrinkamar, S., Adv. High Energy Phys., 2013, Article 923686 pp. (2013) · Zbl 1328.81104
[24] Novaes, M., Rev. Bras. Ensino Fis., 26, 351-357 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.