×

Electromagnetic effects in superconductors in stationary gravitational field. (English) Zbl 1083.83006

Summary: The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by gravity. A magnetic flux (being proportional to angular velocity of rotation \(\Omega\)) through a rotating hollow superconducting cylinder with the radial gradient of temperature \(\nabla_rT\) is theoretically predicted. The magnetic flux is assumed to be produced by the azimuthal current arising from Coriolis force effect on radial thermoelectric current. Finally the magnetic flux through the superconducting ring with radial heat flow located at the equatorial plane interior of the rotating neutron star is calculated. In particular it has been shown that nonvanishing magnetic flux will be generated due to the general relativistic effect of dragging of inertial frames on the thermoelectric current.

MSC:

83C50 Electromagnetic fields in general relativity and gravitational theory
82D37 Statistical mechanics of semiconductors

References:

[1] DOI: 10.1103/PhysRevLett.16.1092 · doi:10.1103/PhysRevLett.16.1092
[2] Papini G., Phys. Lett. 24 pp 32– · doi:10.1016/0375-9601(67)90178-8
[3] Anandan J., Phys. Lett. 105 pp 280– · doi:10.1016/0375-9601(84)90997-6
[4] DOI: 10.1111/j.1749-6632.1986.tb12426.x · doi:10.1111/j.1749-6632.1986.tb12426.x
[5] DOI: 10.1088/0264-9381/11/6A/003 · doi:10.1088/0264-9381/11/6A/003
[6] Ahmedov B. J., Gen. Rel. Grav. 31 pp 356–
[7] DOI: 10.1038/224673a0 · doi:10.1038/224673a0
[8] Buckley K. B., Phys. Rev. 69 pp 055803–
[9] Stairs I. H., Nature 406 pp 484–
[10] Ahmedov B. J., Gravit. Cosmol. 4 pp 139–
[11] Ahmedov B. J., Phys. Lett. 256 pp 9– · doi:10.1016/S0375-9601(99)00182-6
[12] DOI: 10.1111/j.1365-2966.2004.08006.x · doi:10.1111/j.1365-2966.2004.08006.x
[13] DOI: 10.1086/149707 · doi:10.1086/149707
[14] DOI: 10.1093/mnras/204.4.1025 · doi:10.1093/mnras/204.4.1025
[15] DOI: 10.1093/mnras/219.3.703 · Zbl 0625.76120 · doi:10.1093/mnras/219.3.703
[16] Wiebicke H.-J., Astron. & Astrophys. 309 pp 203–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.