×

Local Artinian rings and the Fröberg relation. (English) Zbl 0877.13017

Let \(R\) be a commutative Artinian local ring, with maximal ideal \({\mathfrak m}\), and residue field \(k\). Define the Poincaré series \(P_R(t)= \sum_{i\geq 0}\dim(\text{Tor}_i^R(k,k))t^i\) and the Hilbert series \(H_R(t)= \sum_{i\geq 0}\dim ({\mathfrak m}^i/{\mathfrak m}^{i+1})t^i\). \(R\) is called a Fröberg ring if \(P_R(t)= H_R(-t)^{-1}\). The main result is that if \({\mathfrak m}^3=0\) and \({\mathfrak m}\cdot\text{ann }x={\mathfrak m}^2\) for all \(x\in{\mathfrak m}/{\mathfrak m}^2\), then \(R\) is a Fröberg ring. Some partial converses are given. This is motivated by a preliminary result showing that certain Witt rings are Fröberg rings.

MSC:

13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13E10 Commutative Artinian rings and modules, finite-dimensional algebras
11E81 Algebraic theory of quadratic forms; Witt groups and rings

References:

[1] D. Anick, A counterexample to a conjecture of Serre , Ann. Math. 115 (1982), 1-33. Correction: Ann. Math. 116 (1983), 661. · Zbl 0454.55004 · doi:10.2307/1971338
[2] D. Anick and T. Gulliksen, Rational dependence among Hilbert and Poincaré series , J. Pure Appl. Alg. 38 (1985), 135-157. · Zbl 0575.13008 · doi:10.1016/0022-4049(85)90005-2
[3] J. Backelin and R. Fröberg, Poincaré series of short Artinian rings , J. Algebra 96 (1985), 495-498. · Zbl 0572.13001 · doi:10.1016/0021-8693(85)90023-7
[4] A. Dress and H. Krämer, Bettirehen von Faserprodukten localer Ring , Ann. Math. 215 (1975), 79-82. · Zbl 0287.13005 · doi:10.1007/BF01351793
[5] R. Elman, T.Y. Lam and A. Wadsworth, Pfister ideals in Witt rings , Math. Ann. 245 (1979), 219-245. · Zbl 0401.10032 · doi:10.1007/BF01673508
[6] R. Fitzgerald, Gorenstein Witt rings , Canad. J. Math. 40 (1988), 1186-1202. · Zbl 0655.13026 · doi:10.4153/CJM-1988-050-x
[7] R. Fröberg, Determination of a class of Poincaré series , Math. Scand. 37 (1975), 29-39.
[8] T. Gulliksen, A proof of the existence of minimal \(R\)-algebra resolutions , Acta Math. 120 (1968), 53-58. · Zbl 0157.34603 · doi:10.1007/BF02394606
[9] T. Gulliksen and G. Levin, Homology of local rings , Queen’s Papers in Pure and Appl. Math. 20 (1969), 1-200.
[10] T. Gulliksen, P. Ribenboim and T.M. Viswanathan, An elementary note on group-rings , J. Reine Angew. Math. 242 (1970), 148-162. · Zbl 0219.16008 · doi:10.1515/crll.1970.242.148
[11] G. Levin and L. Avramov, Factoring out the socle of a Gorenstein ring , J. Algebra 55 (1978), 74-83. · Zbl 0407.13018 · doi:10.1016/0021-8693(78)90191-6
[12] C. Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra , in Algebra, algebraic topology and their interactions (J.E. Roos, ed.), Springer-Verlag, New York, 1986.
[13] M. Marshall, Abstract Witt rings , Queen’s Papers Pure Appl. Math. 57 (1980), 1-257. · Zbl 0451.10013
[14] G. Scheja, Über die Bettizahlen lokaler Ringe , Math. Ann. 155 (1964), 155-172. · Zbl 0134.27203 · doi:10.1007/BF01344078
[15] J. Tate, Homology of noetherian and local rings , Illinois J. Math. 1 (1957), 14-27. · Zbl 0079.05501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.