×

The Chern numbers and Euler characteristics of modules. (English) Zbl 1329.13040

Let \((R,\mathfrak{m})\) denote a local Noetherian ring and \(M\) a finitely generated \(R\)-module with \(r = \dim_R M\). Let \(I \subset R\) be an ideal of definition with respect to \(M\). Then the length \(\ell(M/I^nM)\) becomes for large \(n\) a polynomial, the Hilbert polynomial, \(P_M(n) = \sum\limits_{i=0}^{r} (-1)^i e_i(I,M) \binom{n+r-i}{i}\). The first Hilbert coefficient \(e_1(I,M)\) is also called the Chern coeficient of \(I\) relative to \(M\) see W. V. Vasconcelos [Mich. Math. J. 57, 725–743 (2008; Zbl 1234.13005)]. By the work of several authors, the values of \(e_1(I,R)\) carries various information about the ring itself. In the more general situation of a finitely generated \(R\)-module \(M\) the authors investigate \(e_1(I,M)\), where they simplify and make arguments in the ring case more transparent and give several fresh new arguments in the general case.
To be more precise, they investigate the following sets:
(a) \(\Lambda(M) = \{e_1(Q,M) | Q \text{ a parameter ideal of } M\}\).
(b) \(\Xi (M) = \{\chi_1(Q;M) | Q \text{ a parameter ideal of } M\}\), where \(\chi_1(Q;M)\) denotes the first partial Euler characteristic of the Koszul homology.
(c) \[ \Lambda(M) = \{e_1(\mathfrak{q},M) | \mathfrak{q} \text{ a parameter ideal of } M \text{ with the same integral closure as }Q\}. \] Among others, the authors characterize quasi-unmixed \(R\)-modules \(M\) to be (1) Cohen-Macaulay by \(0 \in \Lambda(M)\), (2) Buchsbaum by \(\#(\Lambda(M)) =1\) and (c) generalized Cohen-Macaulay by \(\Lambda(M)\) bounded. They use also the technique of homological degree in order to investigate bounds for these sets of numbers. In a final section they discuss the Buchsbaum-Rim coefficients.

MSC:

13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13H15 Multiplicity theory and related topics
13A30 Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics

Citations:

Zbl 1234.13005

References:

[1] Auslander, M., Buchsbaum, D.: Codimension and multiplicity. Ann. Math. 68, 625-657 (1958) · Zbl 0092.03902 · doi:10.2307/1970159
[2] Brennan, J., Ulrich, B., Vasconcelos, W.V.: The Buchsbaum-Rim polynomial of a module. J. Algebra 241, 379-392 (2001) · Zbl 1071.13504 · doi:10.1006/jabr.2001.8764
[3] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993) · Zbl 0788.13005
[4] Buchsbaum, D., Rim, D.S.: A generalized Koszul complex II. Depth and multiplicity. Trans. Am. Math. Soc. 111, 197-224 (1965) · Zbl 0131.27802 · doi:10.1090/S0002-9947-1964-0159860-7
[5] Cuong, N.T.: p-standard system of parameters and p-standard ideals in local rings. Acta Math. Vietnam. 20, 145-161 (1995) · Zbl 0987.13014
[6] Cuong, N.T., Schenzel, P., Trung, N.V.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85, 57-73 (1978) · Zbl 0398.13014 · doi:10.1002/mana.19780850106
[7] Doering, L.R., Gunston, T., Vasconcelos, W.V.: Cohomological degrees and Hilbert functions of graded modules. Am. J. Math. 120, 493-504 (1998) · Zbl 0924.13011 · doi:10.1353/ajm.1998.0019
[8] Ghezzi, L., Goto, S., Hong, J., Ozeki, K., Phuong, T.T., Vasconcelos, W.V.: Cohen-Macaulayness versus the vanishing of the first Hilbert coefficient of parameter ideals. J. Lond. Math. Soc. 81, 679-695 (2010) · Zbl 1200.13037 · doi:10.1112/jlms/jdq008
[9] Ghezzi, L., Hong, J., Vasconcelos, W.V.: The signature of the Chern coefficients of local rings. Math. Res. Lett. 16, 279-289 (2009) · Zbl 1185.13007 · doi:10.4310/MRL.2009.v16.n2.a6
[10] Goto, S., Hong, J., Vasconcelos, W.V.: The homology of parameter ideals. J. Algebra 368, 271-299 (2012) · Zbl 1264.13023 · doi:10.1016/j.jalgebra.2012.07.003
[11] Goto, S., Nakamura, Y.: Multiplicities and tight closures of parameters. J. Algebra 244, 302-311 (2001) · Zbl 1063.13019 · doi:10.1006/jabr.2001.8907
[12] Goto, S., Nishida, K.: Hilbert coefficients and Buchsbaumness of associated graded rings. J. Pure Appl. Algebra 181, 61-74 (2003) · Zbl 1089.13515 · doi:10.1016/S0022-4049(02)00325-0
[13] Goto, S., Ozeki, K.: Buchsbaumness in local rings possessing constant first Hilbert coefficient of parameters. Nagoya Math. J. 199, 95-105 (2010) · Zbl 1210.13021
[14] Goto, S., Ozeki, K.: Uniform bounds for Hilbert coefficients of parameters. In: Commutative Algebra and its Connections to Geometry, 97-118, Contemp. Math, 555, Am. Math. Soc., Providence, RI (2011) · Zbl 1264.13017
[15] Gulliksen, T., Levin, G.: Homology of local rings, Queen’s Paper in Pure and Applied Mathematics, No. 20, Queen’s University, Kingston, Ont (1969) · Zbl 0208.30304
[16] Hayasaka, F., Hyry, E.: On the Buchsbaum-Rim function of a parameter module. J. Algebra 327, 307-315 (2011) · Zbl 1214.13012 · doi:10.1016/j.jalgebra.2010.09.035
[17] Kawasaki, T.: On Cohen-Macaulayfication of certain quasi-projective schemes. J. Math. Soc. Japan 50, 969-991 (1998) · Zbl 0957.14032 · doi:10.2969/jmsj/05040969
[18] Linh, C.H.: Upper bound for the Castelnuovo-Mumford regularity of associated graded modules. Commun. Algebra 33, 1817-1831 (2005) · Zbl 1099.13006 · doi:10.1081/AGB-200063340
[19] Mandal, M., Singh, B., Verma, J.K.: On some conjectures about the Chern numbers of filtrations. J. Algebra 325, 147-162 (2011) · Zbl 1209.13025 · doi:10.1016/j.jalgebra.2010.10.008
[20] Matsumura, H.: Commutative Algebra. Benjamin/Cummings, Reading (1980) · Zbl 0441.13001
[21] Nagata, M.: Local Rings. Interscience, New York (1962) · Zbl 0123.03402
[22] Rossi, M.E., Trung, N.V., Valla, G.: Castelnuovo-Mumford regularity and extended degree. Trans. Am. Math. Soc. 355, 1773-1786 (2003) · Zbl 1075.13008 · doi:10.1090/S0002-9947-03-03185-4
[23] Rossi, M.E., Valla, G.: On the Chern number of a filtration. Rend. Semin. Mat. Univ. Padova 121, 201-222 (2009) · Zbl 1172.13014 · doi:10.4171/RSMUP/121-12
[24] Rossi, M.E., Valla, G.: Hilbert functions of filtered modules. Lecture Notes of the Unione Matematica Italiana, vol. 9. Springer, Berlin (2010) · Zbl 1201.13003
[25] Schenzel, P.: Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln. Math. Nachr. 88, 295-306 (1979) · Zbl 0432.13012 · doi:10.1002/mana.19790880122
[26] Serre, J.-P.: Algèbre Locale. Multiplicités. Lecture Notes in Mathematics, vol. 11. Springer, Berlin (1965)
[27] Stückrad, J., Vogel, W.: Toward a theory of Buchsbaum singularities. Am. J. Math. 100, 727-746 (1978) · Zbl 0429.14001 · doi:10.2307/2373908
[28] Stückrad, J., Vogel, W.: Buchsbaum rings and applications. Springer, Berlin (1986) · Zbl 0606.13018 · doi:10.1007/978-3-662-02500-0
[29] Trung, N.V.: Toward a theory of generalized Cohen-Macaulay modules. Nagoya Math. J. 102, 1-49 (1986) · Zbl 0637.13013
[30] Vasconcelos, W.V.: The homological degree of a module. Trans. Am. Math. Soc. 350, 1167-1179 (1998) · Zbl 0903.13007 · doi:10.1090/S0002-9947-98-02127-8
[31] Vasconcelos, W.V.: Integral closure. Springer Monographs in Mathematics, New York (2005) · Zbl 1082.13006
[32] Vasconcelos, W.V.: The Chern coefficients of local rings. Michigan Math. J. 57, 725-743 (2008) · Zbl 1234.13005 · doi:10.1307/mmj/1220879434
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.