×

Wavelet solution of variable order pseudodifferential equations. (English) Zbl 1202.65013

The authors obtain wavelet-based algorithms of log-linear complexity for the valuation of contingent claims on pure Feller-Lévy processes \(X_t\) with state-dependent jump intensity by a numerical solution of the corresponding Kolmogorov equations. They introduce a class of pseudodifferential operators \(A\) of variable order and derive estimates for the Schwartz kernels of \(A_X.\) They define variable order Sobolev spaces \(H^{m(x) },0\leq m(x) <1,\) which are the domains of Dirichlet forms of \(A_X\). For spline wavelets with complementary boundary conditions, they use the bounds on the Schwartz kernels to establish the main results of the paper: multilevel norm equivalences in \(H^{m(x) }(I) \) and compression estimates for the moment matrices of \(A_X\) in the wavelet basis. Sufficient conditions on \(A\) to satisfy a Gårding inequality in \(H^{m(x) }(I) \) and time-analyticity of the semigroup \(T_t\) associated with the Feller process \(X_t\) are demonstrated.

MSC:

65C50 Other computational problems in probability (MSC2010)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65T60 Numerical methods for wavelets
47D07 Markov semigroups and applications to diffusion processes
65Y20 Complexity and performance of numerical algorithms
60G51 Processes with independent increments; Lévy processes
35S15 Boundary value problems for PDEs with pseudodifferential operators
91G60 Numerical methods (including Monte Carlo methods)

References:

[1] Bass, R.F.: Uniqueness in law for pure jump Markov processes. Probab. Theory Relat. Fields 79, 271–287 (1988) · Zbl 0664.60080 · doi:10.1007/BF00320922
[2] Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996) · Zbl 0861.60003
[3] Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973) · Zbl 1092.91524 · doi:10.1086/260062
[4] Chernov, A., von Petersdorff, T., Schwab, C.: Exponential convergence of hp quadrature for integral operators with Gevrey kernels. Research-Report No. 2009-03, SAM, ETH · Zbl 1269.65143
[5] Cohen, A.: Numerical Analysis of Wavelet Methods. Studies in Mathematics and its Applications, vol. 32. North Holland–Elsevier, Amsterdam (2003) · Zbl 1038.65151
[6] Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC Press, London (2004) · Zbl 1052.91043
[7] Courrège, Ph.: Sur la forme intégro-differentielle des opérateurs de C K dans C satisfaisant du principe du maximum. Sém. Théor. Potentiel 38 (1965–1966)
[8] Dahmen, W., Schneider, R.: Wavelets with complementary boundary conditions, Function spaces on the cube. Results Math. 34, 255–293 (1998) · Zbl 0931.46006
[9] Delbaen, F., Schachermayer, W.: The variance-optimal martingale measure for continuous processes. Bernoulli 2, 81–105 (1996) · Zbl 0849.60042 · doi:10.2307/3318570
[10] Dijkema, T.J.: Adaptive tensor product wavelet methods for solving PDEs. Dissertation, University of Utrecht (2009) · Zbl 1205.65313
[11] Harbrecht, H., Stevenson, R.: Wavelets with patchwise cancellation properties. Math. Comput. 75, 1871–1889 (2006) · Zbl 1112.46012 · doi:10.1090/S0025-5718-06-01867-9
[12] Hoh, W.: Pseudodifferential operators with negative definite symbols of variable order. Rev. Math. Iberoam. 16, 219–241 (2000) · Zbl 0977.35151
[13] Jacob, N.: Pseudo-Differential Operators and Markov Processes. Vol. 1: Fourier Analysis and Semigroups. Imperial College Press, London (2001) · Zbl 0987.60003
[14] Jacob, N.: Pseudo-Differential Operators and Markov Processes. Vol. 2: Generators and their Potential Theory. Imperial College Press, London (2002) · Zbl 1005.60004
[15] Jacob, N.: Characteristic functions and symbols in the theory of feller processes. Potential Anal. 6, 61–68 (1998) · Zbl 0908.60041 · doi:10.1023/A:1017983112289
[16] Kikuchi, K., Negoro, A.: On Markov Process generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997) · Zbl 0913.60062
[17] Kumano-go, H.: Pseudo-Differential Operators. MIT Press, Cambridge (1981) · Zbl 0472.35034
[18] Leopold, H.G.: On function spaces of variable order of differentiation. Forum Math. 3, 1–21 (1991) · Zbl 0737.46020 · doi:10.1515/form.1991.3.1
[19] Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972) · Zbl 0227.35001
[20] Matache, A.-M., Nitsche, P.A., Schwab, C.: Wavelet Galerkin pricing of American contracts on Lévy driven assets. Quant. Finance 5, 403–424 (2005) · Zbl 1134.91450 · doi:10.1080/14697680500244478
[21] Matache, A.-M., von Petersdorff, T., Schwab, C.: Fast deterministic pricing of options on Lévy driven assets. Math. Model. Numer. Anal. 38, 37–71 (2004) · Zbl 1072.60052 · doi:10.1051/m2an:2004003
[22] Matache, A.-M., Schwab, C., Wihler, T.P.: Fast numerical solution of parabolic integro-differential equations with applications in finance. SIAM J. Sci. Comput. 27, 369–393 (2005) · Zbl 1098.65123 · doi:10.1137/030602617
[23] Matache, A.-M., Schwab, C., Wihler, T.P.: Linear complexity solution of parabolic integrodifferential equations. Numer. Math. 104, 69–102 (2006) · Zbl 1102.65139 · doi:10.1007/s00211-006-0006-5
[24] Merton, R.C.: Option pricing when the underlying stocks are discontinuous. J. Financ. Econ. 5, 125–144 (1976) · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2
[25] von Petersdorff, T., Schwab, C.: Wavelet discretizations of parabolic integro-differential equations. SIAM J. Numer. Anal. 41, 159–180 (2003) · Zbl 1050.65134 · doi:10.1137/S0036142901394844
[26] von Petersdorff, T., Schwab, C.: Numerical solution of parabolic equations in high dimensions. Math. Model. Numer. Anal. 38, 93–128 (2004) · Zbl 1083.65095 · doi:10.1051/m2an:2004005
[27] Primbs, M.: Stabile biorthogonale Spline-Waveletbasen auf dem Intervall. Dissertation, University Duisburg-Essen (2006) · Zbl 1196.65015
[28] Reich, N., Schwab, C., Winter, C.: On Kolmogorov equations for anisotropic multivariate Lévy processes. Research Report No. 2008-03, SAM, ETH
[29] Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)
[30] Schilling, R.: On the existence of Feller processes with a given generator. Preprint (2004). http://www.math.tu-dresden.de/sto/schilling/sources/papers/existenz.pdf
[31] Schneider, R.: Multiskalen- und Wavelet-Matrixkompression. Analysisbasierte Methoden zur effizienten Lösung grosser vollbesetzter Gleichungssysteme. Advances in Numerical Mathematics. Teubner, Stuttgart (1998) · Zbl 0899.65063
[32] Schötzau, D., Schwab, C.: hp-discontinuous Galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Paris 333, 1121–1126 (2001) · Zbl 0993.65108
[33] Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (1985) · Zbl 0574.39006
[34] Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (2002) · Zbl 1036.42018
[35] Urban, K.: Wavelet Methods for Elliptic Partial Differential Equations. Oxford University Press, Oxford (2009) · Zbl 1158.65002
[36] Winter, C.: Wavelet Galerkin schemes for option pricing in multidimensional Lévy models. Dissertation No. 18221, ETH (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.