×

Parabolic problems in generalized Sobolev spaces. (English) Zbl 1479.35516

Summary: We consider a general inhomogeneous parabolic initial-boundary value problem for a \( 2b \)-parabolic differential equation given in a finite multidimensional cylinder. We investigate the solvability of this problem in some generalized anisotropic Sobolev spaces. They are parametrized with a pair of positive numbers \( s \) and \( s/(2b) \) and with a function \( \varphi:[1,\infty)\to(0,\infty) \) that varies slowly at infinity. The function parameter \( \varphi \) characterizes subordinate regularity of distributions with respect to the power regularity given by the number parameters. We prove that the operator corresponding to this problem is an isomorphism on appropriate pairs of these spaces. As an application, we give a theorem on the local regularity of the generalized solution to the problem. We also obtain sharp sufficient conditions under which chosen generalized derivatives of this solution are continuous on a given set.

MSC:

35K35 Initial-boundary value problems for higher-order parabolic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] M. S. Agranovich and M. I. Vishik, Elliptic problems with parameter and parabolic problems of general form, (Russian) Uspehi Mat. Nauk, 19 (1964), 53-161 [English translation in Russian Math. Surveys, 19 (1964), 53-157]. · Zbl 0137.29602
[2] Y. Ameur, Interpolation between Hilbert spaces, in Analysis of Operators on Function Spaces, Trends Math. (eds. A. Aleman etc.), Birkhäuser/Springer, Cham, (2019), 63-115. · Zbl 1437.46025
[3] A. Anop; R. Denk; A. Murach, Elliptic problems with rough boundary data in generalized Sobolev spaces, Commun. Pure Appl. Anal., 20, 697-735 (2021) · Zbl 1460.35116 · doi:10.3934/cpaa.2020286
[4] Yu. M. Berezansky, Expansions in Eigenfunctions of Selfadjoint Operators, American Mathematical Society, Providence, RI, 1968. · Zbl 0157.16601
[5] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss., band 223, Springer-Verlag, Berlin-New York, 1976. · Zbl 0344.46071
[6] O. V. Besov, V. P. Il’in and S. M. Nikol’skij, Integral Representations of Functions and Embedding Theorems, (Russian) \(2^{nd}\) edition, Nauka, Moscow, 1996. · Zbl 0867.46026
[7] R. Denk; M. Hieber; J. Prüss, Optimal \(L^p-L^q\)-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257, 193-224 (2007) · Zbl 1210.35066 · doi:10.1007/s00209-007-0120-9
[8] W. F. Donoghue, The interpolation of quadratic norms, Acta Math., 118, 251-270 (1967) · Zbl 0166.10703 · doi:10.1007/BF02392483
[9] S. D. Eidel’man, Parabolic equations, in Encyclopaedia Math. Sci., vol. 63 (Partial Differential Equations, VI. Elliptic and Parabolic Operators) (eds. Yu.V. Egorov and M.A. Shubin), Springer, Berlin, (1994), 205-316. · Zbl 0801.00007
[10] S. D. Eidel’man and N. V. Zhitarashu, Parabolic Boundary Value Problems, Birkhäuser Verlag, Basel, 1998. · Zbl 0893.35001
[11] M. Fan, Qudratic interpolation and some operator inequalities, J. Math. Inequal., 5, 413-427 (2011) · Zbl 1250.46015 · doi:10.7153/jmi-05-36
[12] W. Farkas; H. G. Leopold, Characterisations of function spaces of generalized smoothness, Ann. Mat. Pura Appl., 185, 1-62 (2006) · Zbl 1116.46024 · doi:10.1007/s10231-004-0110-z
[13] C. Foiaş; J. L. Lions, Sur certains théorèmes d’interpolation, Acta Scient. Math. Szeged, 22, 269-282 (1961) · Zbl 0127.06803
[14] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964. · Zbl 0144.34903
[15] L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, 1963. · Zbl 0108.09301
[16] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. II, Differential Operators with Constant Coefficients, Springer, Berlin, 1983. · Zbl 0521.35002
[17] A. M. Il’in, A. S. Kalashnikov and O. A. Oleinik, Linear equations of the second order of parabolic type, (Russian) Uspekhi Mat. Nauk, 17 (1962), 3-146; English translation in Russian Math. Surveys, 17: 3 (1962), 1-143. · Zbl 0108.28401
[18] V. A. Il’in, The solvability of mixed problems for hyperbolic and parabolic equations, (Russian) Uspekhi Mat. Nauk, 15 (1960), 97-154; English translation in Russian Math. Surveys, 15: 1 (1960), 85-142. · Zbl 0116.29802
[19] S. G. Krein, Yu. L. Petunin and E. M. Semënov, Interpolation of Linear Operators, American Mathematical Society, Providence, RI, 1982. · Zbl 0493.46058
[20] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’tzeva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968. · Zbl 0174.15403
[21] J. L. Lions and E. Magenes, Non-Homogeneous Boundary-Value Problems and Applications, vol. II, Springer, Berlin, 1972. · Zbl 0223.35039
[22] V. M. Los, Anisotropic Hörmander spaces on the lateral surface of a cylinder, J. Math. Sci. (N. Y.), 217, 456-467 (2016) · Zbl 1364.46031 · doi:10.1007/s10958-016-2985-9
[23] V. M. Los, Theorems on isomorphisms for some parabolic initial-boundary-value problems in Hörmander spaces: limiting case, Ukrainian Math. J., 68, 894-909 (2016) · Zbl 1498.35325 · doi:10.1007/s11253-016-1264-8
[24] V. M. Los, Classical Solutions of Parabolic Initial-Boundary-Value Problems and Hörmander Spaces, Ukrainian Math. J., 68, 1412-1423 (2017) · Zbl 1499.35321 · doi:10.1007/s11253-017-1303-0
[25] V. Los; V. A. Mikhailets; A. A. Murach, An isomorphism theorem for parabolic problems in Hörmander spaces and its applications, Commun. Pure Appl. Anal., 16, 69-97 (2017) · Zbl 1361.35072 · doi:10.3934/cpaa.2017003
[26] V. Los; A. Murach, Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces, Open Math., 15, 57-76 (2017) · Zbl 1372.35132 · doi:10.1515/math-2017-0008
[27] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser Verlag, Basel, 1995. · Zbl 0816.35001
[28] V. A. Mikhailets; A. A. Murach, Extended Sobolev scale and elliptic operators, Ukrainian. Math. J., 65, 435-447 (2013) · Zbl 1294.46036 · doi:10.1007/s11253-013-0787-5
[29] V. A. Mikhailets and A. A. Murach, Hörmander Spaces, Interpolation, and Elliptic Problems, De Gruyter, Berlin, 2014. · Zbl 1455.46002
[30] V. A. Mikhailets; A. A. Murach, Interpolation Hilbert spaces between Sobolev spaces, Results Math., 67, 135-152 (2015) · Zbl 1335.46030 · doi:10.1007/s00025-014-0399-x
[31] F. Nicola and L. Rodino, Global Pseudo-Differential Calculus on Euclidean spaces, Birkhäser, Basel, 2010. · Zbl 1257.47002
[32] V. I. Ovchinnikov, The methods of orbits in interpolation theory, Math. Rep., 1, 349-515 (1984) · Zbl 0875.46007
[33] B. Paneah, The Oblique Derivative Problem. The Poincaré problem, Wiley-VCH, Berlin, 2000. · Zbl 0959.35001
[34] E. Seneta, Regularly Varying Functions, Springer, Berlin, 1976. · Zbl 0324.26002
[35] L. N. Slobodeckii, Generalized Sobolev spaces and their application to boundary problems for partial differential equations, (Russian) Leningrad. Gos. Ped. Inst. Uchen. Zap., 197 (1958), 54-112; English translation in Amer. Math. Soc. Transl. (2), 57 (1966), 207-275. · Zbl 0192.22801
[36] V. A. Solonnikov, Apriori estimates for solutions of second-order equations of parabolic type, (Russian) Tr. Mat. Inst. Steklova, 70 (1964), 133-212. · Zbl 0168.08202
[37] H. Triebel, Interpolation Theory, Function Spaces, Differential, Operators, \(2^{nd}\) edition, Johann Ambrosius Barth, Heidelberg, 1995. · Zbl 0830.46028
[38] H. Triebel, The Structure of Functions, Birkhäser, Basel, 2001. · Zbl 0984.46021
[39] L. R. Volevich and B. P. Paneah, Certain spaces of generalized functions and embedding theorems, (Russian) Uspekhi Mat. Nauk, 20 (1965), 3-74; English translation in Russian Math. Surveys, 20 (1965), 1-73. · Zbl 0135.16501
[40] N. V. Zhitarashu, Theorems on complete collection of isomorphisms in the \(L_2\)-theory of generalized solutions for one equation parabolic in Petrovski \(\breve{l}\) sense, Mat. Sb., 128, 451-473 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.