×

Infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents. (English) Zbl 1475.35403

Summary: In this paper, we show the existence of infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents. More precisely, we consider \[ \begin{cases} M([u]_{s(\cdotp)}^2)(-\Delta)^{s(\cdotp)}u + V(x)u = \lambda|u|^{p(x)-2}u + \mu |u|^{q(x)-2}u & \text{ in } \Omega, \\ u = 0 & \text{ in } \mathbb{R}^N \ \Omega, \end{cases} \] where \[ [u]_{s(\cdotp)} := \left( \int\int_{\mathbb{R}^{2N}} \frac{|u(x) -u(y)|^2}{|x-y|^{N+2s(x,y)}} dx \; dy \right)^{1/2}, \] \(N \geq 1, s(\cdotp): \mathbb{R}^N \times \mathbb{R}^N \to (0,1)\) is a continuous function, \( \Omega\) is a bounded domain in \(\mathbb{R}^N\) with \(N > 2s(x,y)\) for all \((x,y) \in \Omega \times \Omega, (-\Delta)^{s(\cdotp)}\) is the variable-order fractional Laplace operator, \(M: \mathbb{R}_0^+ \to \mathbb{R}_0^+\) and \(V: \Omega \to [0, \infty)\) are two continuous functions, \(\alpha, \beta > 0\) are two parameters and \(p,q \in C(\Omega)\) addition to using the new version of Clark’s theorem due to Liu and Wang to prove the existence of infinitely many solutions for the above problem, we also apply the symmetric mountain pass theorem, fountain theorem and dual fountain theorem to obtain the same conclusion. The main feature, as well as the main difficulty, of our problem is the fact that the Kirchhoff term \(M\) could be zero at zero.

MSC:

35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
35J25 Boundary value problems for second-order elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
47G20 Integro-differential operators
Full Text: DOI

References:

[1] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull Sci Math, 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[2] Molica Bisci, G.; Rădulescu, V.; Servadei, R., Variational methods for nonlocal fractional problems (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1356.49003
[3] Lorenzo, CF; Hartley, TT., Initialized fractional calculus, Int J App Math, 3, 249-265 (2000) · Zbl 1172.26301
[4] Lorenzo, CF; Hartley, TT., Variable order and distributed order fractional operators, Nonlinear Dynam, 29, 57-98 (2002) · Zbl 1018.93007 · doi:10.1023/A:1016586905654
[5] Samko, S.; Ross, B., Integration and differentiation to a variable fractional order, Integral Trans Special Func, 1, 277-300 (1993) · Zbl 0820.26003 · doi:10.1080/10652469308819027
[6] Samko, S., Fractional integration and differentiation of variable order, Anal Math, 21, 213-236 (1995) · Zbl 0838.26006 · doi:10.1007/BF01911126
[7] Sun, H.; Chen, W.; Wei, H., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur Phys J Special Topics, 193, 185-192 (2011) · doi:10.1140/epjst/e2011-01390-6
[8] Leopold, HG., Embedding of function spaces of variable order of differentiation, Czechoslovak Math J, 49, 633-644 (1999) · Zbl 1008.46015 · doi:10.1023/A:1022483721944
[9] Kikuchi, K.; Negoro, A., On Markov processes generated by pseudodifferential operator of variable order, Osaka J Math, 34, 319-335 (1997) · Zbl 0913.60062
[10] Ruiz-Medina, MD; Anh, VV; Angulo, JM., Fractional generalized random fields of variable order, Stoch Anal Appl, 22, 775-799 (2004) · Zbl 1069.60040 · doi:10.1081/SAP-120030456
[11] Bahrouni, A., Comparison and sub-supersolution principles for the fractional \(####\)-Laplacian, J Math Anal Appl, 458, 1363-1372 (2018) · Zbl 1378.35053 · doi:10.1016/j.jmaa.2017.10.025
[12] Bahrouni, A.; Rădulescu, V., On a new fractional Sobolev space and application to nonlocal variational problems with variable exponent, Discrete Contin Dyn Syst Ser S, 11, 379-389 (2018) · Zbl 1374.35158
[13] Kaufmann, U.; Rossi, J.; Vidal, R., Fractional Sobolev spaces with variable exponents and fractional \(####\)-Laplacians, Electron J Qual Theory Differ Equ, 76, 1-10 (2017) · Zbl 1413.46035 · doi:10.14232/ejqtde.2017.1.76
[14] Fiscella, A.; Valdinoci, E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal, 94, 156-170 (2014) · Zbl 1283.35156 · doi:10.1016/j.na.2013.08.011
[15] Colasuonno, F.; Pucci, P., Multiplicity of solutions for \(####\)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal, 74, 5962-5974 (2011) · Zbl 1232.35052 · doi:10.1016/j.na.2011.05.073
[16] Liu, D., On a p-Kirchhoff equation via fountain theorem and dual fountain theorem, Nonlinear Anal, 72, 302-308 (2010) · Zbl 1184.35050 · doi:10.1016/j.na.2009.06.052
[17] Molica Bisci, G.; Repovš, D., Higher nonlocal problems with bounded potential, J Math Anal Appl, 420, 591-601 (2014) · Zbl 1294.35021 · doi:10.1016/j.jmaa.2014.05.073
[18] Corrêa, FJSA; Figueiredo, GM., On an elliptic equation of p-Kirchhoff type via variational methods, Bull Austral Math Soc, 74, 236-277 (2006) · Zbl 1108.45005
[19] Pucci, P.; Saldi, S., Critical stationary Kirchhoff equations in \(####\) involving nonlocal operators, Rev Mat Iberoam, 32, 1-22 (2016) · Zbl 1405.35045 · doi:10.4171/RMI/879
[20] Pucci, P.; Xiang, M.; Zhang, B., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in \(####\), Calc Var Partial Differ Equ, 54, 2785-2806 (2015) · Zbl 1329.35338 · doi:10.1007/s00526-015-0883-5
[21] Chen, C.; Song, H.; Xiu, Z., Multiple solution for p-Kirchhoff equations in \(####\), Nonlinear Anal, 86, 146-156 (2013) · Zbl 1283.35020 · doi:10.1016/j.na.2013.03.017
[22] Autuori, G.; Fiscella, A.; Pucci, P., Stationary Kirchhoff problems involving a fractional operator and a critical nonlinearity, Nonlinear Anal, 125, 699-714 (2015) · Zbl 1323.35015 · doi:10.1016/j.na.2015.06.014
[23] Pucci, P.; Xiang, M.; Zhang, B., Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv Nonlinear Anal, 5, 27-55 (2016) · Zbl 1334.35395
[24] Xiang, M.; Zhang, B.; Yang, D., Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal, 178, 190-204 (2019) · Zbl 1402.35307 · doi:10.1016/j.na.2018.07.016
[25] Liu, Z.; Wang, Z-Q., On Clark’s theorem and its applications to partially sublinear problems, Ann Inst H Poincaré Anal. Non Linéaire, 32, 1015-1037 (2015) · Zbl 1333.58004 · doi:10.1016/j.anihpc.2014.05.002
[26] Diening, L.; Harjulehto, P.; Hästö, P., Lebesgue and Sobolev spaces with variable exponents (2011), Heidelberg: Springe-Verlag, Heidelberg · Zbl 1222.46002
[27] Fan, X.; Zhao, D., On the spaces \(####\) and \(####\), J Math Anal Appl, 263, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[28] Kováčik, O.; Rákosnik, J., On spaces \(####\) and \(####\), Czechoslovak Math J, 41, 592-618 (1991) · Zbl 0784.46029
[29] Servadei, R.; Valdinoci, E., Mountain pass solutions for non-local elliptic operators, J Math Anal Appli, 389, 887-898 (2012) · Zbl 1234.35291 · doi:10.1016/j.jmaa.2011.12.032
[30] Xiang, M.; Zhang, B.; Guo, X., Infinitely many solutions for a fractional Kirchhoff-type problem via fountain theorem, Nonlinear Anal, 120, 299-313 (2015) · Zbl 1328.35287 · doi:10.1016/j.na.2015.03.015
[31] Bartsch, T., Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal, 20, 1205-1216 (1993) · Zbl 0799.35071 · doi:10.1016/0362-546X(93)90151-H
[32] Bartsch, T.; Willem, M., On an elliptic equation with concave and convex nonlinearities, Proc Amer Math Soc, 123, 3555-3561 (1995) · Zbl 0848.35039 · doi:10.1090/S0002-9939-1995-1301008-2
[33] Willem, M., Minimax theorems (1996), Boston: Birkh \(####\) ser, Boston · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.