×

The isomorphic classification of Besov spaces over \(\mathbb R^d\) revisited. (English) Zbl 1354.46034

Summary: We take advantage of the recent developments in the isomorphic classification of the infinite matrix spaces of mixed norms \(\ell_q(\ell_p)\) for the whole range of values \(0<p,q\leq\infty\) to give a unified approach to the classification of Besov spaces over Euclidean spaces. In particular, we show that different Besov spaces with generalized smoothness \({\mathop{B}\limits^\circ}_{p,q}^w(\mathbb R^d)\) over the Euclidean space \(\mathbb R^d\) are isomorphic if and only if the indices \(p\) and \(q\) match.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
42B35 Function spaces arising in harmonic analysis
46B25 Classical Banach spaces in the general theory
46B03 Isomorphic theory (including renorming) of Banach spaces
46B45 Banach sequence spaces

References:

[1] F. Albaic and J. L. Ansorena, On the mutually non isomorphic \(\ell_{p}(\ell_{q})\) spaces, II , Math. Nachr. 288 (2015), no. 1, 5-9.
[2] F. Albiac and N. J. Kalton, Topics in Banach Space Theory , Grad. Texts in Math. 233 , Springer, New York, 2006. · Zbl 1094.46002
[3] A. Almeida, Wavelet bases in generalized Besov spaces , J. Math. Anal. Appl. 304 (2005), no. 1, 198-211. · Zbl 1108.42007 · doi:10.1016/j.jmaa.2004.09.017
[4] J. L. Ansorena and O. Blasco, Characterization of weighted Besov spaces , Math. Nachr. 171 (1995), 5-17. · Zbl 0813.46023 · doi:10.1002/mana.19951710102
[5] J. L. Ansorena and O. Blasco, Convolution multipliers on weighted Besov spaces , Bol. Soc. Mat. Mexicana (3) 4 (1998), no. 1, 47-68. · Zbl 0946.42007
[6] P. Cembranos and J. Mendoza, On the mutually non isomorphic \(\ell_{p}(\ell_{q})\) spaces , Math. Nachr. 284 (2011), no. 16, 2013-2023. · Zbl 1234.46007 · doi:10.1002/mana.201010056
[7] W. Farkas and H. Leopold, Characterisations of function spaces of generalised smoothness , Ann. Mat. Pura Appl. (4) 185 (2006), no. 1, 1-62. · Zbl 1116.46024 · doi:10.1007/s10231-004-0110-z
[8] M. Frazier and B. Jawerth, Decomposition of Besov spaces , Indiana Univ. Math. J. 34 (1985), no. 4, 777-799. · Zbl 0551.46018 · doi:10.1512/iumj.1985.34.34041
[9] M. Frazier and B. Jawerth, “Applications of the \(\phi\) and wavelet transforms to the theory of function spaces” in Wavelets and Their Applications , Jones and Bartlett, Boston, 1992, 377-417. · Zbl 0827.46036
[10] M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces , CBMS Regional Conference Series in Mathematics 79 , Amer. Math. Soc., Providence, 1991. · Zbl 0757.42006
[11] P. G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes , Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 1-18. · Zbl 0657.42028
[12] J. Peetre, New Thoughts on Besov Spaces , Duke Univ. Math. Ser. 1 , Department of Mathematics, Duke University, Durham, NC, 1976. · Zbl 0356.46038
[13] A. Pietsch, History of Banach Spaces and Linear Operators , Birkhäuser, Boston, 2007. · Zbl 1121.46002 · doi:10.1007/978-0-8176-4596-0
[14] W. Rudin, Functional Analysis , 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991. · Zbl 0867.46001
[15] H. Triebel, Über die Existenz von Schauderbasen in Sobolev-Besov-Räumen: Isomorphiebeziehungen , Studia Math. 46 (1973), 83-100 (German). · Zbl 0251.46032
[16] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators , VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.