×

The influence of numerical error on parameter estimation and uncertainty quantification for advective PDE models. (English) Zbl 1416.65315

Summary: Advective partial differential equations can be used to describe many scientific processes. Two significant sources of error that can cause difficulties in inferring parameters from experimental data on these processes include (i) noise from the measurement and collection of experimental data and (ii) numerical error in approximating the forward solution to the advection equation. How this second source of error alters parameter estimation and uncertainty quantification during an inverse problem methodology is not well understood. As a step towards a better understanding of this problem, we present both analytical and computational results concerning how a least squares cost function and parameter estimator behave in the presence of numerical error in approximating solutions to the underlying advection equation. We investigate residual patterns to derive an autocorrelative statistical model that can improve parameter estimation and confidence interval computation for first order methods. Building on our results and their general nature, we provide guidelines for practitioners to determine when numerical or experimental error is the main source of error in their inference, along with suggestions of how to efficiently improve their results.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35R30 Inverse problems for PDEs

Software:

mctoolbox

References:

[1] Arnold A, Calvetti D and Somersalo E 2013 Linear multistep methods, particle filtering and sequential Monte Carlo Inverse Problems29 085007 · Zbl 1279.65089 · doi:10.1088/0266-5611/29/8/085007
[2] Banks H T and Fitzpatrick B G 1990 Statistical methods for model comparison in parameter estimation problems for distributed systems J. Math. Biol.28 501-27 · Zbl 0732.62061 · doi:10.1007/BF00164161
[3] Banks H T, Kenz Z R and Thompson W C 2012 An extension of RSS-based model comparison tests for weighted least squares Technical Report (https://projects.ncsu.edu/crsc/reports/ftp/pdf/crsc-tr12-18.pdf) · Zbl 1402.62025
[4] Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: CRC Press) (https://doi.org/10.1007/978-3-540-78273-5_1) · Zbl 1402.00037
[5] Dale P D, Maini P K and Sherratt J A 1994 Mathematical modeling of corneal epithelial wound healing Math. Biosci.124 127-47 · Zbl 0818.92007 · doi:10.1016/0025-5564(94)90040-X
[6] Fisher A T and Becker K 2000 Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data Nature403 71-4 · doi:10.1038/47463
[7] Higham N J 1996 Accuracy and Stability of Numerical Algorithms 1st edn (Philadelphia, PA: SIAM) · Zbl 0847.65010
[8] Huttunen J M J and Kaipio J P 2007 Approximation error analysis in nonlinear state estimation with an application to state-space identification Inverse Problems23 2141-57 · Zbl 1123.62068 · doi:10.1088/0266-5611/23/5/019
[9] Kolehmainen V, Lassas M, Niinimaki K and Siltanen S 2012 Sparsity-promoting Bayesian inversion Inverse Problems28 025005 · Zbl 1233.62046 · doi:10.1088/0266-5611/28/2/025005
[10] Lassas M and Siltanen S 2004 Can one use total variation prior for edge-preserving Bayesian inversion? Inverse Problems20 1537 · Zbl 1062.62260 · doi:10.1088/0266-5611/20/5/013
[11] Lassas M, Saksman E and Siltanen S 2009 Discretization-invariant Bayesian inversion and Besov space priors Inverse Problems Imaging3 87-122 · Zbl 1191.62046 · doi:10.3934/ipi.2009.3.87
[12] Lauritzen P H and Thuburn J 2012 Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics Q. J. R. Meteorol. Soc.138 906-18 · doi:10.1002/qj.986
[13] Leonard B P 1991 The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection Comput. Methods Appl. Mech. Eng.88 17-74 · Zbl 0746.76067 · doi:10.1016/0045-7825(91)90232-U
[14] LeVeque R J 2007 Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Philadelphia, PA: SIAM) · Zbl 1127.65080 · doi:10.1137/1.9780898717839
[15] Mavromoustaki A, Wang L, Wong J and Bertozzi A L 2018 Surface tension effects for particle settling and resuspension in viscous thin films Nonlinearity31 3151 · Zbl 1392.76097 · doi:10.1088/1361-6544/aab91d
[16] Mueller J and Siltanen S 2012 Linear and Nonlinear Inverse Problems with Practical Applications(Computational Science & Engineering) (Philadelphia, PA: SIAM) · Zbl 1262.65124 · doi:10.1137/1.9781611972344
[17] Nardini J and Bortz D 2018 Investigation of a structured Fisher’s equation with applications in biochemistry SIAM J. Appl. Math.78 1712-36 · Zbl 1516.35167 · doi:10.1137/16M1108546
[18] Leveque R J 1992 Conservation Laws(Lectures in Mathematics) 2nd edn (Boston, MA: Birkhäuser) · doi:10.1007/978-3-0348-8629-1
[19] Seber G A F and Wild C J 1988 Nonlinear Regression(Wiley Series in Probability and Statistics) (New York: Wiley)
[20] Simpson M J, Lo K Y and Sun Y S 2017 Quantifying the roles of random motility and directed motility using advection-diffusion theory for a 3T3 fibroblast cell migration assay stimulated with an electric field BMC Syst. Biol.11 39 · doi:10.1186/s12918-017-0413-5
[21] Sweby P 1984 High resolution schemes using flux limiters for hyperbolic conservation laws SIAM J. Numer. Anal.21 995-1011 · Zbl 0565.65048 · doi:10.1137/0721062
[22] Thackham J A, McElwain D L S and Turner I W 2008 Computational approaches to solving equations arising from wound healing Bull. Math. Biol.71 211-46 · Zbl 1171.92027 · doi:10.1007/s11538-008-9360-z
[23] Vadakkepuliyambatta S, Hornbach M J, Bunz S and Phrampus B J 2015 Controls on gas hydrate system evolution in a region of active fluid flow in the SW Barents Sea Mar. Pet. Geol.66 861-72 · doi:10.1016/j.marpetgeo.2015.07.023
[24] Webb G F 2008 Population models structured by age, size, and spatial position Structured Population Models in Biology and Epidemiology (Berlin: Springer) pp 1-49 · doi:10.1007/978-3-540-78273-5_1
[25] Wu C, Asokan S, Berginski M, Haynes E, Sharpless N, Griffith J, Gomez S and Bear J 2012 Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis Cell148 973-87 · doi:10.1016/j.cell.2011.12.034
[26] Xue H, Miao H and Wu H 2010 Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error Ann. Stat.38 2351-87 · Zbl 1203.62049 · doi:10.1214/09-AOS784
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.