×

Higamod: a hierarchical isogeometric approach for model reduction in curved pipes. (English) Zbl 1390.76347

Summary: In computational hemodynamics we typically need to solve incompressible fluids in domains given by curved pipes or network of pipes. To reduce the computational costs, or conversely to improve models based on a pure 1D (axial) modeling, an approach called “hierarchical model reduction” (HiMod) was recently proposed. It consists of a diverse numerical approximation of the axial and of the transverse components of the dynamics. The latter are properly approximated by spectral methods with a few degrees of freedom, while classical finite elements were used for the main dynamics to easily fit any morphology. However, affine elements for curved geometries are generally inaccurate. In this paper, we conduct a preliminary exploration of isogeometric analysis (IGA) applied to the axial discretization. With this approach, the centerline is approximated by non uniform rational B-splines (NURBS). The same functions are used to represent the axial component of the solution. In this way we obtain an accurate representation of the centerline as well as of the solution with few axial degrees of freedom. This paper provides preliminary promising results of the combination of HiMod with IGA – referred to as HIGAMod approach – to be applied in any field involving computational fluid dynamics in generic pipe-like domains.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76M22 Spectral methods applied to problems in fluid mechanics

Software:

FreeFem++; GeoPDEs
Full Text: DOI

References:

[1] Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput Mech, 41, 371-378, (2008) · Zbl 1162.76355
[2] Aletti, M.; Bortolossi, A.; Perotto, S.; Veneziani, A., One-dimensional surrogate models for advection-diffusion problems, (Abdulle, A.; Deparis, S.; Kressner, D.; Nobile, F.; Picasso, M., Numerical mathematics and advanced applications, Lect. Notes Comput. Sci. Eng., Vol. 103, (2015), Springer Cham (ZUG), Switzerland), 447-456 · Zbl 1328.65263
[3] Aletti M, Perotto S, Veneziani A. Educated bases for the himod reduction of advection-diffusion-reaction problems with general boundary conditions. 2015b. MOX Report no. 37/2015. · Zbl 1397.65248
[4] Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D. A., An image-based modeling framework for patient-specific computational hemodynamics, Med Biol Eng Comput, 46, 11, 1097-1112, (2008)
[5] Auricchio, F.; Beir ao da Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math Mod Meth Appl Sci, 20, 2075-2107, (2010) · Zbl 1226.65091
[6] van Bogerijen, G. H.; Auricchio, F.; Conti, M.; Lefieux, A.; Reali, A.; Veneziani, A., Aortic hemodynamics after thoracic endovascular aortic repair, with particular attention to the bird-beak configuration, J Endovas Ther, 21, 6, 791-802, (2014)
[7] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201, (2007) · Zbl 1169.76352
[8] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37, (2008) · Zbl 1169.74015
[9] Bazilevs, Y.; Hsu, M.-C.; Kiendl, J.; Wuchner, R.; Bletzinger, K. U., 3d simulation of wind turbine rotors at full scale. part II: fluid-structure interaction modeling with composite blades, Int J Numer Meth Fluids, 65, 236-253, (2011) · Zbl 1428.76087
[10] Blanco, P. J.; Leiva, J. S.; Feijóo, R. A.; Buscaglia, G. C., Black-box decomposition approach for computational hemodynamics: one-dimensional models, Comput Methods Appl Mech Eng, 200, 13-16, 1389-1405, (2011) · Zbl 1228.76203
[11] Blanco, P. J.; Alvarez, L. M.; Feijóo, R. A., Hybrid element-based approximation for the Navier-Stokes equations in pipe-like domains, Comput Methods Appl Mech Eng, 283, 971-993, (2015) · Zbl 1423.76516
[12] Alvarez LA, Mansilla, Blanco PJ, Bulant CA, Dari EA, Veneziani A, et al. Transversally enriched pipe element method for blood flow modeling. 2015. Emory Dept. Math and CS Report, www.mathcs.emory.edu.
[13] Boyd, J. P., Chebyshev and Fourier spectral methods, (2001), Courier Corporation · Zbl 0994.65128
[14] Borden, M.; Verhoosel, C.; Scott, M.; Hughes, T. J.R.; Landis, C., A phase-field description of dynamic brittle fracture, Comput Methods Appl Mech Eng, 217-220, 77-95, (2012) · Zbl 1253.74089
[15] Caseiro, J.; Valente, R.; Reali, A.; Kiendl, J.; Auricchio, F.; Alves de Sousa, R., Assumed natural strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures, Comput Methods Appl Mech Eng, 284, 861-880, (2015) · Zbl 1423.74167
[16] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric analysis toward integration of CAD and FEA, (2009), Wiley · Zbl 1378.65009
[17] de Falco, C.; Reali, A.; Vazquez, R., Geopdes: a research tool for isogeometric analysis of pdes, Adv Eng Softw, 42, 1020-1034, (2011) · Zbl 1246.35010
[18] Elguedj, T.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R., \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput Methods Appl Mech Eng, 197, 2732-2762, (2008) · Zbl 1194.74518
[19] Ern, A.; Perotto, S.; Veneziani, A., Hierarchical model reduction for advection-diffusion-reaction problems, (Kunisch, K.; Of, G.; Steinbach, O., Numerical mathematics and advanced applications, (2008), Springer-Verlag Berlin, Heidelberg, Germany), 703-710 · Zbl 1157.65487
[20] Peiró, J.; Veneziani, A., Reduced models of the cardiovascular system, (Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular mathematics, modeling, simulation and applications, Vol. 1, (2009), Springer-Verlag Berlin, Heidelberg), 347-394 · Zbl 1300.92005
[21] Gomez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput Methods Appl Mech Eng, 197, 4333-4352, (2008) · Zbl 1194.74524
[22] Guzzetti S, Perotto S, Veneziani A. Hierarchical model reduction for incompressible flows in cylindrical axisymmetric domains, in preparation. 2016.
[23] Hecht, F., New developement in freefem++, J Numer Math, 20, 3-4, 251-265, (2012) · Zbl 1266.68090
[24] Hsu, M.-C.; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, M. C.H., Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with t- splines and Fung-type material models, Comput Mech, 55, 1211-1225, (2015) · Zbl 1325.74048
[25] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195, (2005) · Zbl 1151.74419
[26] Hughes, T. J.R.; Evans, J. A.; Reali, A., Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput Methods Appl Mech Engrg, 272, 290-320, (2014) · Zbl 1296.65148
[27] Kiendl, J.; Hsu, M.-C.; Wu, M. C.H.; Reali, A., Isogeometric Kirchhoff-love shell formulations for general hyperelastic materials, Comput Methods Appl Mech Engrg, 291, 280-303, (2015) · Zbl 1423.74177
[28] Lipton, S.; Evans, J. A.; Bazilevs, Y.; Elguedj, T.; Hughes, T. J.R., Robustness of isogeometric structural discretizations under severe mesh distortion, Comput Methods Appl Mech Eng, 199, 357-373, (2010) · Zbl 1227.74112
[29] Liu, J.; Gomez, H.; Evans, J. A.; Hughes, T. J.R.; Landis, C. M., Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations, J Comput Phys, 248, 47-86, (2013) · Zbl 1349.76237
[30] Morganti, S.; Auricchio, F.; Benson, D. J.; Gambarin, F. I.; Hartmann, S.; Hughes, T. J.R., Patient-specific isogeometric structural analysis of aortic valve closure, Comput Methods Appl Mech Eng, 294, 428-448, (2015)
[31] Perotto, S., A survey of hierarchical model (hi-mod) reduction methods for elliptic problems, (Idelsohn, S. R., Numerical simulations of coupled problems in engineering, computational methods in applied sciences, Vol. 33, (2014), Springer Cham (ZUG), Switzerland), 217-241
[32] Perotto, S., Hierarchical model (hi-mod) reduction in non-rectilinear domains, (Erhel, J.; Gander, M.; Halpern, L.; Pichot, G.; Sassi, T.; Widlund, O., Domain decomposition methods in science and engineering, Lect. Notes Comput. Sci. Eng., Vol. 98, (2014), Springer, Cham Cham (ZUG), Switzerland), 477-485 · Zbl 1382.65418
[33] Perotto, S.; Ern, A.; Veneziani, A., Hierarchical local model reduction for elliptic problems: a domain decomposition approach, Multiscale Model Simul, 8, 4, 1102-1127, (2010) · Zbl 1206.65251
[34] Perotto, S.; Veneziani, A., Coupled model and grid adaptivity in hierarchical reduction of elliptic problems, J Sci Comput, 60, 3, 505-536, (2014) · Zbl 1307.65155
[35] Perotto, S.; Zilio, A., Hierarchical model reduction: three different approaches, (Cangiani, A.; Davidchack, R.; Georgoulis, E.; Gorban, A.; Levesley, J.; Tretyakov, M., Numerical mathematics and advanced applications, (2013), Springer-Verlag Berlin, Heidelberg, Germany), 851-859 · Zbl 1311.65150
[36] Perotto, S.; Zilio, A., Space-time adaptive hierarchical model reduction for parabolic equations, Adv Model Simul Eng Sci, 2, 25, (2015)
[37] Piccinelli, M.; Veneziani, A.; Steinman, D.; Remuzzi, A.; Antiga, L., A framework for geometric analysis of vascular structures: application to cerebral aneurysms, IEEE Trans Med Imaging, 28, 8, 1141-1155, (2009)
[38] http://mathcs.emory.edu/aneuriskweb.
[39] Sangalli, L. M.; Secchi, P.; Vantini, S.; Veneziani, A., Efficient estimation of three-dimensional curves and their derivatives by free-knot regression splines, applied to the analysis of inner carotid artery centrelines, J Roy Stat Soc C-App, 58, 3, 285-306, (2009)
[40] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C.; Hughes, T. J.R., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput Methods Appl Mech Eng, 196, 2943-2959, (2007) · Zbl 1121.76076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.