×

Modeling dimensionally-heterogeneous problems: Analysis, approximation and applications. (English) Zbl 1261.65128

Summary: A general theoretical framework for coupled dimensionally-heterogeneous partial differential equations is developed. This is done by recasting the variational formulation in terms of coupling interface variables. In such a general setting we analyze existence and uniqueness of solutions for both the continuous problem and its finite dimensional approximation. This approach also allows the development of different iterative substructuring solution methodologies involving dimensionally-homogeneous subproblems. Numerical experiments are carried out to test our theoretical results.

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35G20 Nonlinear higher-order PDEs
35A15 Variational methods applied to PDEs

Software:

rbMIT

References:

[1] Babuška I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973) · Zbl 0258.65108 · doi:10.1007/BF01436561
[2] Badia S., Nobile F., Vergara C.: Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 198(33–36), 2768–2784 (2009) · Zbl 1228.76079 · doi:10.1016/j.cma.2009.04.004
[3] Bernardi C., Dauge M., Maday Y.: Spectral Methods for Axisymmetric Domains, volume Series in Applied Mathematics 3. Gauthier-Villars, Editions Scientifiques et Médicales Elsevier, Paris (1999) · Zbl 0929.35001
[4] Blanco P.J., Feijóo R.A.: Sensitivity analysis in kinematically incompatible models. Comput. Methods Appl. Mech. Eng. 198, 3287–3298 (2009) · Zbl 1230.80014 · doi:10.1016/j.cma.2009.06.010
[5] Blanco P.J., Feijóo R.A., Urquiza S.A.: A unified variational approach for coupling 3D–1D models and its blood flow applications. Comput. Methods Appl. Mech. Eng. 196, 4391–4410 (2007) · Zbl 1173.76430 · doi:10.1016/j.cma.2007.05.008
[6] Blanco P.J., Feijóo R.A., Urquiza S.A.: A variational approach for coupling kinematically incompatible structural models. Comput. Methods Appl. Mech. Eng. 197, 1577–1602 (2008) · Zbl 1194.74187 · doi:10.1016/j.cma.2007.12.001
[7] Blanco P.J., Pivello M.R., Urquiza S.A., Feijóo R.A.: On the potentialities of 3D–1D coupled models in hemodynamics simulations. J. Biomech. 42, 919–930 (2009) · doi:10.1016/j.jbiomech.2009.01.034
[8] Blanco P.J., Urquiza S.A., Feijóo R.A.: Assessing the influence of heart rate in local hemodynamics through coupled 3D-1D-0D models. Int. J. Numer. Methods Biomed. Eng. 26, 890–903 (2010) · Zbl 1193.92027
[9] Deparis S., Discacciati M., Fourestey G., Quarteroni A.: Fluid–structure algorithm based on Steklov–Poincaré operators. Comput. Methods Appl. Mech. Eng. 195, 5797–5812 (2006) · Zbl 1124.76026 · doi:10.1016/j.cma.2005.09.029
[10] Discacciati M., Quarteroni A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6, 93–103 (2004) · Zbl 1299.76252
[11] Eringen A.C., Şuhubi E.S.: Elastodynamics Volume II: Linear Theory. Academic Press, New York (1975) · Zbl 0344.73036
[12] Formaggia L., Gerbeau J.F., Nobile F., Quarteroni A.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191, 561–582 (2001) · Zbl 1007.74035 · doi:10.1016/S0045-7825(01)00302-4
[13] Gastaldi F., Gastaldi L., Quarteroni A.: Adaptive domain decomposition methods for advection dominated equations. East-West J. Numer. Math. 4(3), 165–206 (1996) · Zbl 0880.65093
[14] Grinberg L., Anor T., Madsen J.R., Yakhot A., Karniadakis G.E.: Large-scale simulation of the human arterial tree. Clinical and Experimental Pharmacology and Physiology 36, 194–205 (2009) · doi:10.1111/j.1440-1681.2008.05010.x
[15] Leiva J.S., Blanco P.J., Buscaglia G.C.: Iterative strong coupling of dimensionally–heterogeneous models. Internat. J. Numer. Methods Eng. 81, 1558–1580 (2010) · Zbl 1183.76838
[16] Migliavacca F., Balossino R., Pennati G., Dubini G., Hsia T.-Y., de Leval M.R., Bove E.L.: Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39, 1010–1020 (2006) · doi:10.1016/j.jbiomech.2005.02.021
[17] Quarteroni A., Valli A.: Numerical Approximation of Partial Diffential Equations. Springer, Berlin (1994) · Zbl 0803.65088
[18] Quarteroni A., Valli A.: Domain Decomposition Methods for Partial Differential Equations. The Clarendon Press, Oxford University Press, New York (1999) · Zbl 0931.65118
[19] Quarteroni A., Veneziani A.: Analysis of a geometrical multiscale model based on the coupling of PDE’s and ODE’s for blood flow simulations. SIAM J. Multiscale Model. Simul. 1, 173–195 (2003) · Zbl 1060.35003 · doi:10.1137/S1540345902408482
[20] Quarteroni A., Veneziani A., Zunino P.: A domain decomposition method for advection-diffusion processes with application to blood solutes. SIAM J. Sci. Comput. 23(6), 1959–1980 (2002) (electronic) · Zbl 1032.76036 · doi:10.1137/S1064827500375722
[21] Rozza, G., Huynh, D.B.P., Nguyen, N.C., Patera, A.T.: Real-time reliable simulation of heat transfer phenomena. In: ASME–American Society of Mechanical Engineers. Heat Transfer Summer Conference Proceedings, S. Francisco, CA, US, July 2009. ASME, New York, (2009) Paper HT2009-88212
[22] Smith B.F., Bjørstad P.E., Gropp W.D.: Domain Decomposition. Cambridge University Press, Cambridge (1996) · Zbl 0857.65126
[23] Toselli A., Widlund O.: Domain Decomposition Methods–Algorithms and Theory, volume 34 of Springer Series in Computational Mathematics. Springer, Berlin (2005) · Zbl 1069.65138
[24] Urquiza S.A., Blanco P.J., Vénere M.J., Feijóo R.A.: Multidimensional modelling for the carotid artery blood flow. Comput. Methods Appl. Mech. Eng. 195, 4002–4017 (2006) · Zbl 1178.76395 · doi:10.1016/j.cma.2005.07.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.