×

An advanced numerical scheme for multi-dimensional stochastic Kolmogorov equations with superlinear coefficients. (English) Zbl 1523.60097

Summary: This work develops a novel approximation for a class of superlinear stochastic Kolmogorov equations with positive global solutions. On the one hand, most existing explicit methods that work for the superlinear stochastic differential equations (SDEs), e.g. various modified Euler-Maruyama (EM) methods, fail to preserve positivity of the solution. On the other hand, methods that preserve positivity are mostly implicit, or fail to cope with the multi-dimensional scenario. This work aims to construct an advanced numerical method which is not only naturally structure preserving but also cost effective. A strong convergence framework is then developed with an almost optimal convergence rate of order arbitrarily close to \(1/2\). To make the arguments concise, we elaborate our theory with the generalised stochastic Lotka-Volterra model, though the method is applicable to a wide bunch of multi-dimensional superlinear stochastic Kolmogorov systems in various fields including finance and epidemiology.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
65C30 Numerical solutions to stochastic differential and integral equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Gurney, W.; Nisbet, R. M., Ecological Dynamics (1998), Oxford University Press
[2] Kulkarni, V. G., Modeling and Analysis of Stochastic Systems (2016), Chapman and Hall/CRC
[3] Cai, Y.; Cai, S.; Mao, X., Stochastic delay foraging arena predator-prey system with Markov switching, Stoch. Anal. Appl., 38, 2, 191-212 (2020) · Zbl 1437.37115
[4] Cai, S.; Cai, Y.; Mao, X., A stochastic differential equation SIS epidemic model with regime switching, Discrete Contin. Dyn. Syst. Ser. B, 26, 9, 4887-4905 (2021) · Zbl 1464.92241
[5] Wei, F.; Fu, Q., Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Appl. Math. Model., 40, 1, 126-134 (2016) · Zbl 1443.92038
[6] Zhai, X.; Li, W.; Wei, F.; Mao, X., Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations, Chaos Solitons Fractals, 169, 113224 (2023)
[7] Cai, Y.; Cai, S.; Mao, X., Analysis of a stochastic predator-prey system with foraging arena scheme, Stochastics, 92, 2, 193-222 (2020) · Zbl 1490.60145
[8] Lotka, A. J., Elements of physical biology, (Williams & Wilkins, Baltimore, MD, Reprint 1956 (1925), Elements of Mathematical Biology: Elements of Mathematical Biology Dover, New York) · JFM 51.0416.06
[9] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115, 772, 700-721 (1927) · JFM 53.0517.01
[10] Verhulst, P. F., Notice sur la loi que la population suit dans son accroissement, Corresp. Math.Phys., 10, 113-126 (1838)
[11] Gray, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J., A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71, 3, 876-902 (2011) · Zbl 1263.34068
[12] Bahar, A.; Mao, X., Stochastic delay population dynamics, Int. J. Pure Appl. Math., 11, 377-400 (2004) · Zbl 1043.92028
[13] Imhof, L. A., The long-run behavior of the stochastic replicator dynamics, Ann. Appl. Probab., 15, 1B, 1019-1045 (2005) · Zbl 1081.60045
[14] Tuong, T. D.; Nguyen, N. N.; Yin, G., Longtime behavior of a class of stochastic tumor-immune systems, Systems Control Lett., 146, Article 104806 pp. (2020) · Zbl 1453.92083
[15] Nguyen, D. H.; Nguyen, N. N.; Yin, G., Stochastic functional Kolmogorov equations, I: Persistence, Stochastic Process. Appl., 142, 319-364 (2021) · Zbl 1484.34187
[16] Hening, A.; Nguyen, D. H., Coexistence and extinction for stochastic Kolmogorov systems, Ann. Appl. Probab., 28, 3, 1893-1942 (2018) · Zbl 1410.60094
[17] Higham, D. J.; Mao, X.; Stuart, A. M., Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40, 3, 1041-1063 (2002) · Zbl 1026.65003
[18] Higham, D. J.; Mao, X.; Yuan, C., Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations, SIAM J. Numer. Anal., 45, 2, 592-609 (2007) · Zbl 1144.65005
[19] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467, 2130, 1563-1576 (2011) · Zbl 1228.65014
[20] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, Ann. Appl. Probab., 22, 4, 1611-1641 (2012) · Zbl 1256.65003
[21] Mao, X., The truncated Euler-Maruyama method for stochastic differential equations, J. Comput. Appl. Math., 290, 370-384 (2015) · Zbl 1330.65016
[22] Wang, X.; Gan, S., The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients, J. Difference Equ. Appl., 19, 3, 466-490 (2013) · Zbl 1262.65008
[23] Kelly, C.; Lord, G. J., Adaptive time-stepping strategies for nonlinear stochastic systems, IMA J. Numer. Anal., 38, 3, 1523-1549 (2018) · Zbl 1477.65023
[24] Heston, S. L., A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financial Stud., 6, 2, 327-343 (1993) · Zbl 1384.35131
[25] Ait-Sahalia, Y., Testing continuous-time models of the spot interest rate, Rev. Financial Stud., 9, 2, 385-426 (1996)
[26] Higham, D.; Mao, X., Convergence of Monte Carlo simulations involving the mean-reverting square root process, J. Comput. Finance, 8, 3, 35-62 (2005)
[27] Chan, K. C.; Karolyi, G. A.; Longstaff, F. A.; Sanders, A. B., An empirical comparison of alternative models of the short-term interest rate, J. Finance, 47, 3, 1209-1227 (1992)
[28] Neuenkirch, A.; Szpruch, L., First order strong approximations of scalar SDEs defined in a domain, Numer. Math., 128, 1, 103-136 (2014) · Zbl 1306.60075
[29] Appleby, J. A.D.; Guzowska, M.; Kelly, C.; Rodkina, A., Preserving positivity in solutions of discretised stochastic differential equations, Appl. Math. Comput., 217, 2, 763-774 (2010) · Zbl 1208.65013
[30] Yi, Y.; Hu, Y.; Zhao, J., Positivity preserving logarithmic Euler-Maruyama type scheme for stochastic differential equations, Commun. Nonlinear Sci. Numer. Simul., 101, Article 105895 pp. (2021) · Zbl 1492.60179
[31] Lei, Z.; Gan, S.; Chen, Z., Strong and weak convergence rates of logarithmic transformed truncated EM methods for SDEs with positive solutions, J. Comput. Appl. Math., 419, Article 114758 pp. (2023) · Zbl 1504.65016
[32] Mao, X.; Wei, F.; Wiriyakraikul, T., Positivity preserving truncated Euler-Maruyama Method for stochastic Lotka-Volterra competition model, J. Comput. Appl. Math., 394, Article 113566 pp. (2021) · Zbl 1465.65008
[33] Cai, Y.; Hu, J.; Mao, X., Positivity and boundedness preserving numerical scheme for the stochastic epidemic model with square-root diffusion term, Appl. Numer. Math., 182, 100-116 (2022) · Zbl 1512.60034
[34] Cai, Y.; Guo, Q.; Mao, X., Positivity preserving truncated scheme for the stochastic Lotka-Volterra model with small moment convergence, Calcolo, 60, 2, 24 (2023) · Zbl 1518.65011
[35] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2010) · Zbl 1242.65109
[36] Hochbruck, M.; Ostermann, A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, 3, 1069-1090 (2005) · Zbl 1093.65052
[37] Komori, Y.; Burrage, K., A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems, BIT Numer. Math., 54, 4, 1067-1085 (2014) · Zbl 1307.65011
[38] Mora, C. M., Weak exponential schemes for stochastic differential equations with additive noise, IMA J. Numer. Anal., 25, 3, 486-506 (2005) · Zbl 1080.65005
[39] Chen, Z.; Gan, S.; Wang, X., A full-discrete exponential Euler approximation of the invariant measure for parabolic stochastic partial differential equations, Appl. Numer. Math., 157, 135-158 (2020) · Zbl 07235996
[40] Kloeden, P. E.; Lord, G. J.; Neuenkirch, A.; Shardlow, T., The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds, J. Comput. Appl. Math., 235, 5, 1245-1260 (2011) · Zbl 1208.65017
[41] Bossy, M.; Jabir, J. F.; Martinez, K., On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth, Bernoulli, 27, 1, 312-347 (2021) · Zbl 1475.60130
[42] Li, X.; Mao, X.; Yin, G., Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in pth moment and stability, IMA J. Numer. Anal., 39, 2, 847-892 (2019) · Zbl 1461.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.