×

A novel chaotic map constructed by geometric operations and its application. (English) Zbl 1517.34099


MSC:

34K23 Complex (chaotic) behavior of solutions to functional-differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
94A60 Cryptography
Full Text: DOI

References:

[1] Feng, J., Yang, L.T., Zhang, R., Qiang, W., Chen, J.: Privacy preserving high-order bi-lanczos in cloud-fog computing for industrial applications. IEEE Trans. Ind. Inform. (2020). doi:10.1109/TII.2020.2998086
[2] Feng, J.; Yang, LT; Zhu, Q.; Choo, KKR, Privacy-preserving tensor decomposition over encrypted data in a federated cloud environment, IEEE Trans. Dependable Secur. Comput., 17, 4, 857-868 (2020) · doi:10.1109/TDSC.2018.2881452
[3] Wang, Y.; Zhang, Z.; Zhang, LY; Feng, J.; Gao, J.; Lei, P., A genetic algorithm for constructing bijective substitution boxes with high nonlinearity, Inf. Sci., 523, 152-166 (2020) · Zbl 1458.68295 · doi:10.1016/j.ins.2020.03.025
[4] Lambic, D., A new discrete-space chaotic map based on the multiplication of integer numbers and its application in S-box design, Nonlinear Dyn., 100, 1, 699-711 (2020) · doi:10.1007/s11071-020-05503-y
[5] Lambic, D., A novel method of s-box design based on discrete chaotic map, Nonlinear Dyn., 87, 2407-2413 (2017) · doi:10.1007/s11071-016-3199-x
[6] Teh, JS; Alawida, M.; Ho, JJ, Unkeyed hash function based on chaotic sponge construction and fixed-point arithmetic, Nonlinear Dyn., 100, 1, 713-729 (2020) · doi:10.1007/s11071-020-05504-x
[7] Li, Y.; Li, X.; Liu, X., A fast and efficient hash function based on generalized chaotic mapping with variable parameters, Neural Comput. Appl., 28, 6, 1405-1415 (2017) · doi:10.1007/s00521-015-2158-7
[8] Ren, H.; Zhao, C.; Grebogi, C., One-way hash function based on delay-induced hyperchaos, Int. J. Bifurc. Chaos, 30, 2, 2050020 (2020) · Zbl 1455.94190 · doi:10.1142/S0218127420500200
[9] Naskar, PK; Bhattacharyya, S.; Nandy, D.; Chaudhuri, A., A robust image encryption scheme using chaotic tent map and cellular automata, Nonlinear Dyn., 100, 3, 2877-2898 (2020) · Zbl 1516.94046 · doi:10.1007/s11071-020-05625-3
[10] Ben Farah, MA; Farah, A.; Farah, T., An image encryption scheme based on a new hybrid chaotic map and optimized substitution box, Nonlinear Dyn., 99, 4, 3041-3064 (2020) · doi:10.1007/s11071-019-05413-8
[11] Patro, KAK; Soni, A.; Netam, PK; Acharya, B., Multiple grayscale image encryption using cross-coupled chaotic maps, J. Inf. Secur. Appl., 52, 102470 (2020)
[12] Lambic, D.; Nikolić, M., Pseudo-random number generator based on discrete-space chaotic map, Nonlinear Dyn., 90, 1-10 (2017) · doi:10.1007/s11071-017-3656-1
[13] Wang, Y.; Zhang, Z.; Wang, G.; Liu, D., A pseudorandom number generator based on a 4D piecewise logistic map with coupled parameters, Int. J. Bifurc. Chaos, 29, 9, 1950124 (2019) · Zbl 1431.65008 · doi:10.1142/S0218127419501244
[14] Lv, X.; Liao, X.; Yang, B., A novel pseudo-random number generator from coupled map lattice with time-varying delay, Nonlinear Dyn., 94, 1, 325-341 (2018) · doi:10.1007/s11071-018-4361-4
[15] Li, C.; Zhang, Y.; Xie, EY, When an attacker meets a cipher-image in 2018: a year in review, J. Inf. Secur. Appl., 48, 102361 (2019)
[16] Li, C.; Lin, D.; Lü, J.; Hao, F., Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography, IEEE Multimed., 25, 4, 46-56 (2018) · doi:10.1109/MMUL.2018.2873472
[17] Wang, Q.; Yu, S.; Li, C.; Lü, J.; Fang, X.; Guyeux, C.; Bahi, JM, Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems, IEEE Trans. Circuits Syst. I-Regul. Pap., 63, 3, 401-412 (2016) · Zbl 1469.94118 · doi:10.1109/TCSI.2016.2515398
[18] Ye, G.; Pan, C.; Dong, Y.; Shi, Y.; Huang, X., Image encryption and hiding algorithm based on compressive sensing and random numbers insertion, Signal Process., 172, 107563 (2020) · doi:10.1016/j.sigpro.2020.107563
[19] Hua, Z.; Zhou, Y., Dynamic parameter-control chaotic system, IEEE Trans. Cybern., 46, 12, 3330-3341 (2016) · doi:10.1109/TCYB.2015.2504180
[20] Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Aldea, C.; Celma, S., Chaos-based bitwise dynamical pseudorandom number generator on FPGA, IEEE Trans. Instrum. Meas., 68, 1, 291-293 (2019) · doi:10.1109/TIM.2018.2877859
[21] Zhou, Y.; Hua, Z.; Pun, CM; Chen, CP, Cascade chaotic system with applications, IEEE Trans. Cybern., 45, 9, 2001-2012 (2016) · doi:10.1109/TCYB.2014.2363168
[22] Som, S.; Dutta, S.; Singha, R.; Kotal, A.; Palit, S., Confusion and diffusion of color images with multiple chaotic maps and chaos-based pseudorandom binary number generator, Nonlinear Dyn., 80, 1-2, 615-627 (2015) · doi:10.1007/s11071-015-1893-8
[23] Elmanfaloty, RA; Aboubakr, E., Random property enhancement of a 1D chaotic PRNG with finite precision implementation, Chaos Solitons Fractals, 118, 134-144 (2019) · Zbl 1442.11111 · doi:10.1016/j.chaos.2018.11.019
[24] Dastgheib, MA; Farhang, M., A digital pseudo-random number generator based on sawtooth chaotic map with a guaranteed enhanced period, Nonlinear Dyn., 89, 4, 2957-2966 (2017) · Zbl 1378.65027 · doi:10.1007/s11071-017-3638-3
[25] Liu, L.; Miao, S.; Cheng, M.; Gao, X., A pseudorandom bit generator based on new multi-delayed Chebyshev map, Inf. Process. Lett., 116, 11, 674-681 (2016) · doi:10.1016/j.ipl.2016.06.011
[26] Barani, MJ; Ayubi, P.; Valandar, MY; Irani, BY, A new pseudo random number generator based on generalized Newton complex map with dynamic key, J. Inf. Secur. Appl., 53, 102509 (2020)
[27] May, RM, Bifurcations and dynamic complexity in ecological systems, Ann. N. Y. Acad. Sci., 316, 1, 517-529 (1979) · Zbl 0427.92018 · doi:10.1111/j.1749-6632.1979.tb29494.x
[28] Han, X.; Zhang, C.; Yu, Y.; Bi, Q., Boundary-crisis-induced complex bursting patterns in a forced cubic map, Int. J. Bifurc. Chaos, 27, 4, 1750051 (2017) · Zbl 1366.37096 · doi:10.1142/S0218127417500511
[29] Tigan, G.; Constantinescu, D., Bifurcations in a family of Hamiltonian systems and associated nontwist cubic maps, Chaos Solitons Fractals, 91, 128-135 (2016) · Zbl 1372.37109 · doi:10.1016/j.chaos.2016.05.013
[30] Wolf, A.; Swift, JB; Swinney, HL; Vastano, JA, Determining Lyapunov exponents from a time series, Physica D, 16, 3, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[31] Kocarev, L.; Tasev, Z., Public-key encryption based on Chebyshev maps, IEEE Symp. Circuits Syst., 3, 28-31 (2003)
[32] Pan, XY; Zhao, HM, Research on the entropy of logistic chaos, Acta Phys. Sin., 61, 20, 2005041-2005046 (2012) · Zbl 1274.37021
[33] Wong, K., A combined chaotic cryptographic and hashing scheme, Phys. Lett. A, 307, 5-6, 292-298 (2003) · Zbl 1008.94018 · doi:10.1016/S0375-9601(02)01770-X
[34] Wang, Y.; Liu, Z.; Ma, J.; He, H., A pseudorandom number generator based on piecewise logistic map, Nonlinear Dyn., 83, 4, 2373-2391 (2016) · Zbl 1354.65012 · doi:10.1007/s11071-015-2488-0
[35] Xu, H.; Tong, XJ; Zhang, M.; Liu, Y.; Wang, Z., Dynamical analysis and homogenization process of unimodal chaotic mapping utilized for pseudo-random sequences, Int. J. Bifurc. Chaos, 28, 14, 1850172 (2018) · Zbl 1410.37042 · doi:10.1142/S0218127418501729
[36] Lambic, D.; Nikolić, M., New pseudo-random number generator based on improved discrete-space chaotic map, Filomat, 33, 2257-2268 (2019) · Zbl 07535132 · doi:10.2298/FIL1908257L
[37] Hua, Z.; Zhou, B.; Zhou, Y., Sine chaotification model for enhancing chaos and its hardware implementation, IEEE Trans. Ind. Electron., 66, 2, 1273-1284 (2019) · doi:10.1109/TIE.2018.2833049
[38] Hua, Z.; Zhou, Y.; Bao, B., Two-dimensional sine chaotification system with hardware implementation, IEEE Trans. Ind. Inform., 16, 2, 887-897 (2020) · doi:10.1109/TII.2019.2923553
[39] Lambic, D., Security analysis and improvement of the pseudo-random number generator based on piecewise logistic map, J. Electron. Test. Theory Appl., 35, 4, 519-527 (2019) · doi:10.1007/s10836-019-05818-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.