×

Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics. (English) Zbl 1353.82070

Summary: We discuss the formulation, recent developments and findings obtained from a mesoscale mechanics technique called phase field dislocation dynamics (PFDD). We begin by presenting recent advancements made in modelling face-centred cubic materials, such as integration with atomic-scale simulations to account for partial dislocations. We discuss calculations that help in understanding grain size effects on transitions from full to partial dislocation-mediated slip behaviour and deformation twinning. Finally, we present recent extensions of the PFDD framework to alternative crystal structures, such as body-centred cubic metals, and two-phase materials, including free surfaces, voids and bi-metallic crystals. With several examples we demonstrate that the PFDD model is a powerful and versatile method that can bridge the length and time scales between atomistic and continuum-scale methods, providing a much needed understanding of deformation mechanisms in the mesoscale regime.

MSC:

82D25 Statistical mechanics of crystals
82B26 Phase transitions (general) in equilibrium statistical mechanics
Full Text: DOI

References:

[1] DOI: 10.1016/j.msea.2014.02.030 · doi:10.1016/j.msea.2014.02.030
[2] DOI: 10.1063/1.4870462 · doi:10.1063/1.4870462
[3] Zeng Y , Hunter A , Beyerlein IJ , Koslowski M . In press. A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces. Int. J. Plast. (doi:10.1016/j.ijplas.2015.09.001) · doi:10.1016/j.ijplas.2015.09.001
[4] DOI: 10.1016/S0022-5096(02)00037-6 · Zbl 1094.74563 · doi:10.1016/S0022-5096(02)00037-6
[5] DOI: 10.1016/S1359-6454(01)00075-1 · doi:10.1016/S1359-6454(01)00075-1
[6] DOI: 10.1016/j.actamat.2014.12.045 · doi:10.1016/j.actamat.2014.12.045
[7] Mura T . 1987 Micromechanics of defects in solids . Berlin, Germany: Kluwer Academic Publishers. · Zbl 0652.73010 · doi:10.1007/978-94-009-3489-4
[8] DOI: 10.1016/j.jmps.2011.03.011 · Zbl 1270.74042 · doi:10.1016/j.jmps.2011.03.011
[9] DOI: 10.1103/PhysRevB.84.144108 · doi:10.1103/PhysRevB.84.144108
[10] DOI: 10.1088/0959-5309/52/1/305 · doi:10.1088/0959-5309/52/1/305
[11] DOI: 10.1088/0959-5309/59/2/309 · doi:10.1088/0959-5309/59/2/309
[12] Hull D , Bacon DJ . 2001 Introduction to dislocations . Oxford, UK: Elsevier Butterworth-Heinemann.
[13] DOI: 10.1080/01418610108214434 · doi:10.1080/01418610108214434
[14] DOI: 10.1016/j.actamat.2003.10.014 · doi:10.1016/j.actamat.2003.10.014
[15] DOI: 10.1016/0927-0256(96)00008-0 · doi:10.1016/0927-0256(96)00008-0
[16] DOI: 10.1103/PhysRevB.54.11169 · doi:10.1103/PhysRevB.54.11169
[17] DOI: 10.1103/PhysRevLett.77.3865 · doi:10.1103/PhysRevLett.77.3865
[18] DOI: 10.1063/1.1734689 · doi:10.1063/1.1734689
[19] DOI: 10.1103/PhysRevLett.94.125502 · doi:10.1103/PhysRevLett.94.125502
[20] DOI: 10.1080/14786437108217419 · doi:10.1080/14786437108217419
[21] DOI: 10.1088/0965-0393/21/2/025015 · doi:10.1088/0965-0393/21/2/025015
[22] DOI: 10.1103/PhysRevLett.100.045507 · doi:10.1103/PhysRevLett.100.045507
[23] DOI: 10.1080/14786436808227500 · doi:10.1080/14786436808227500
[24] DOI: 10.1038/nmat1136 · doi:10.1038/nmat1136
[25] DOI: 10.1080/14786430701528739 · doi:10.1080/14786430701528739
[26] DOI: 10.1016/S1359-6454(01)00167-7 · doi:10.1016/S1359-6454(01)00167-7
[27] Zhao, Influence of stacking fault energy on nanostructure formation under high pressure torsion, Mater. Sci. Eng. A 410–411 pp 188– (2005) · doi:10.1016/j.msea.2005.08.074
[28] DOI: 10.1080/09500830903092399 · doi:10.1080/09500830903092399
[29] DOI: 10.1038/nmat1035 · doi:10.1038/nmat1035
[30] Van Swygenhoven, Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni, Acta Mater. 47 pp 3117– (2004) · doi:10.1016/S1359-6454(99)00109-3
[31] DOI: 10.1126/science.1083727 · doi:10.1126/science.1083727
[32] DOI: 10.1016/j.actamat.2004.09.001 · doi:10.1016/j.actamat.2004.09.001
[33] DOI: 10.1063/1.1594836 · doi:10.1063/1.1594836
[34] DOI: 10.1016/S0022-5096(05)80012-2 · doi:10.1016/S0022-5096(05)80012-2
[35] DOI: 10.1016/j.actamat.2005.03.047 · doi:10.1016/j.actamat.2005.03.047
[36] DOI: 10.1016/j.actamat.2007.08.042 · doi:10.1016/j.actamat.2007.08.042
[37] Hunter, Unprecedented grain size effect on stacking fault width, Appl. Phys. Lett. Mater. 1 pp 032109– (2013)
[38] DOI: 10.1016/0079-6425(94)00007-7 · doi:10.1016/0079-6425(94)00007-7
[39] DOI: 10.1146/annurev-matsci-070813-113304 · doi:10.1146/annurev-matsci-070813-113304
[40] DOI: 10.1016/S1359-6454(02)00318-X · doi:10.1016/S1359-6454(02)00318-X
[41] DOI: 10.1103/PhysRevLett.100.095701 · doi:10.1103/PhysRevLett.100.095701
[42] DOI: 10.1016/j.actamat.2012.07.027 · doi:10.1016/j.actamat.2012.07.027
[43] DOI: 10.1063/1.4883396 · doi:10.1063/1.4883396
[44] DOI: 10.1038/nmat1141 · doi:10.1038/nmat1141
[45] DOI: 10.1016/j.pmatsci.2011.05.001 · doi:10.1016/j.pmatsci.2011.05.001
[46] DOI: 10.1007/s10853-013-7140-0 · doi:10.1007/s10853-013-7140-0
[47] McCabe, The critical role of grain orientation and applied stress for nanoscale twinning, Nat. Commun. 5 pp 3806– (2014) · doi:10.1038/ncomms4806
[48] DOI: 10.1016/j.jmps.2015.02.019 · doi:10.1016/j.jmps.2015.02.019
[49] Voronoi, New parametric applications concerning the theory of quadratic forms: second announcement, J. Reine Angew. Math. 134 pp 198– (1908)
[50] DOI: 10.1016/0025-5416(75)90071-3 · doi:10.1016/0025-5416(75)90071-3
[51] DOI: 10.1016/0001-6160(62)90119-0 · doi:10.1016/0001-6160(62)90119-0
[52] DOI: 10.1016/0022-5088(67)90048-3 · doi:10.1016/0022-5088(67)90048-3
[53] DOI: 10.1016/S1359-6454(98)00006-8 · doi:10.1016/S1359-6454(98)00006-8
[54] DOI: 10.1080/01418610108214442 · doi:10.1080/01418610108214442
[55] Yamaguchi, Core structure of nonscrew 1/2111 dislocations on {110} planes in bcc crystals. I. Core structure in an unstressed crystal, J. Phys. F 5 pp 1– (1973) · doi:10.1088/0305-4608/5/1/004
[56] Vitek, Core structure of nonscrew 1/2111 dislocations on {110} planes in bcc crystals. II. Peierls stress and the effect of an external shear stress on the cores, J. Phys. F 5 pp 11– (1973)
[57] DOI: 10.1016/j.actamat.2006.03.044 · doi:10.1016/j.actamat.2006.03.044
[58] DOI: 10.1016/S1359-6454(97)00367-4 · doi:10.1016/S1359-6454(97)00367-4
[59] DOI: 10.1016/S1359-6462(98)00162-6 · doi:10.1016/S1359-6462(98)00162-6
[60] DOI: 10.1007/s11661-997-0191-6 · doi:10.1007/s11661-997-0191-6
[61] Bassani, Complex macroscopic plastic flow arising from non-planar dislocation core structures, Mater. Sci. Eng. A 319–321 pp 97– (2001) · doi:10.1016/S0921-5093(00)02008-6
[62] DOI: 10.3139/146.110046 · doi:10.3139/146.110046
[63] DOI: 10.1016/j.ijplas.2014.07.007 · doi:10.1016/j.ijplas.2014.07.007
[64] DOI: 10.1016/j.ijplas.2013.03.001 · doi:10.1016/j.ijplas.2013.03.001
[65] DOI: 10.1088/0965-0393/21/2/025009 · doi:10.1088/0965-0393/21/2/025009
[66] DOI: 10.1080/01418610110079399 · doi:10.1080/01418610110079399
[67] Koehler, Attempt to design a strong solid, Phys. Rev. B 2 pp 547– (1970) · doi:10.1103/PhysRevB.2.547
[68] DOI: 10.1016/S1359-6454(97)00244-9 · doi:10.1016/S1359-6454(97)00244-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.