×

Computational singular perturbation with non-parametric tabulation of slow manifolds for time integration of stiff chemical kinetics. (English) Zbl 1264.80018

Summary: This paper presents a novel tabulation strategy for the adaptive numerical integration of chemical kinetics using the computational singular perturbation (CSP) method. The strategy stores and reuses CSP quantities required to filter out fast dissipative processes, resulting in a non-stiff chemical source term. In particular, non-parametric regression on low-dimensional slow invariant manifolds (SIMs) in the chemical state space is used to approximate the CSP vectors spanning the fast chemical subspace and the associated fast chemical time-scales. The relevant manifold and its dimension varies depending on the local number of exhausted modes at every location in the chemical state space. Multiple manifolds are therefore tabulated, corresponding to different numbers of exhausted modes (dimensions) and associated radical species. Non-parametric representations are inherently adaptive, and rely on efficient approximate-nearest-neighbor queries. As the CSP information is only a function of the non-radical species in the system and has relatively small gradients in the chemical state space, tabulation occurs in a lower-dimensional state space and at a relatively coarse level, thereby improving scalability to larger chemical mechanisms. The approach is demonstrated on the simulation of homogeneous constant pressure \(\mathrm{H}_2\)-air and \(\mathrm{CH}_4\)-air ignition, over a range of initial conditions. For \(\mathrm{CH}_4\)-air, results are shown that outperform a direct implicit integration of the stiff chemical kinetics while maintaining good accuracy.

MSC:

80A25 Combustion
80A30 Chemical kinetics in thermodynamics and heat transfer
65L05 Numerical methods for initial value problems involving ordinary differential equations
80M25 Other numerical methods (thermodynamics) (MSC2010)
62G08 Nonparametric regression and quantile regression
68P05 Data structures
05C05 Trees

References:

[1] Griffiths J. F., Prog. Energy Combust. Sci. 21 pp 25– (1995) · doi:10.1016/0360-1285(94)00022-V
[2] Okino M., Chem. Rev. 98 pp 391– (1998) · doi:10.1021/cr950223l
[3] Turanyi T., Int. J. Chem. Kinetics 21 pp 83– (1989) · doi:10.1002/kin.550210203
[4] Frenklach M., Prog. Astronaut. Aeronaut. 105 pp 365– (1986)
[5] Schwer D., Combust. Flame 133 pp 451– (2003) · doi:10.1016/S0010-2180(03)00045-2
[6] Lu T., Proc. Comb. Inst. 30 pp 1333– (2005) · doi:10.1016/j.proci.2004.08.145
[7] Valorani M., Combust. Flame 146 pp 29– (2006) · doi:10.1016/j.combustflame.2006.03.011
[8] Bodenstein M., Z. Phys. Chem. 114 pp 208– (1924)
[9] Hesstvedt E., Int. J. Chem. Kinetics 10 pp 971– (1978) · doi:10.1002/kin.550100907
[10] Bulewicz E., Proc. Roy. Soc. (London), Series A 235 pp 89– (1956) · doi:10.1098/rspa.1956.0067
[11] Williams F., Combustion Theory,, 2. ed. (1985)
[12] Lam S., Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane–Air Flames pp 227– (1991) · doi:10.1007/BFb0035372
[13] Lam S., Combust. Sci. Technol. 89 pp 375– (1993) · doi:10.1080/00102209308924120
[14] Løvås T., Proc. Comb. Inst. 29 pp 1387– (2002) · doi:10.1016/S1540-7489(02)80170-5
[15] Goussis D., J. Comput. Phys. 128 pp 261– (1996) · Zbl 0862.65088 · doi:10.1006/jcph.1996.0209
[16] Lam S., Proc. Comb. Inst. 22 pp 931– (1988)
[17] Goussis D., On the homogeneous methane–air reaction system (1990)
[18] Goussis D., Proc. Comb. Inst. 24 pp 113– (1992)
[19] Valorani M., Proc. Comb. Inst. 31 pp 483– (2007) · doi:10.1016/j.proci.2006.07.027
[20] Prager J., Proc. Comb. Inst. 32 pp 509– (2008) · doi:10.1016/j.proci.2008.06.074
[21] Valorani M., 46th AIAA Aerospace Sciences Meeting and Exhibit (2008)
[22] Maas U., Combust. Flame 88 pp 239– (1992) · doi:10.1016/0010-2180(92)90034-M
[23] Keck J., Prog. Energy Combust. Sci. 16 pp 125– (1990) · doi:10.1016/0360-1285(90)90046-6
[24] Law R., 22nd Symposium (International) on Combustion pp 1705– (1988)
[25] Ren Z., J. Chem. Phys. 124 pp 114111– (2006) · doi:10.1063/1.2177243
[26] Valorani M., Combust. Flame 134 pp 35– (2003) · doi:10.1016/S0010-2180(03)00067-1
[27] Bhattacharjee B., Combust. Flame 135 pp 191– (2003) · doi:10.1016/S0010-2180(03)00159-7
[28] Løvås T., Proc. Comb. Inst. 29 pp 1403– (2002) · doi:10.1016/S1540-7489(02)80172-9
[29] Singer M., Appl. Numer. Math. 59 pp 272– (2009) · Zbl 1157.80003 · doi:10.1016/j.apnum.2008.02.004
[30] Najm H., J. Phys.: Conf. Series 16 pp 101– (2005) · doi:10.1088/1742-6596/16/1/012
[31] Ortega J., J. Phys.: Conf. Series 78 pp 012054– (2007) · doi:10.1088/1742-6596/78/1/012054
[32] Lee J., Combust. Theory Model. 11 pp 73– (2007) · Zbl 1105.80015 · doi:10.1080/13647830600763595
[33] Valorani M., J. Comput. Phys. 169 pp 44– (2001) · Zbl 1037.76045 · doi:10.1006/jcph.2001.6709
[34] Valorani M., J. Comput. Phys. 228 pp 4665– (2009) · Zbl 1169.65325 · doi:10.1016/j.jcp.2009.03.011
[35] Pope S., Combust. Theory Model. 1 pp 41– (1997) · Zbl 1046.80500 · doi:10.1080/713665229
[36] Singer M., Combust. Theory Model. 10 pp 199– (2006) · doi:10.1080/13647830500307501
[37] Singer M., Combust. Flame 147 pp 150– (2006) · doi:10.1016/j.combustflame.2006.06.007
[38] Tonse S., Israel J. Chem. 39 pp 97– (1999)
[39] Tonse S., Int. J. Chem. Kinetics 35 pp 438– (2003) · doi:10.1002/kin.10140
[40] Bykov V., Combust. Theory Model. 12 pp 389– (2008) · Zbl 1148.80391 · doi:10.1080/13647830701830251
[41] Arya S., J. ACM 45 pp 891– (1998) · Zbl 1065.68650 · doi:10.1145/293347.293348
[42] Brown P., SIAM J. Sci. Stat. Comput. 10 pp 1038– (1989) · Zbl 0677.65075 · doi:10.1137/0910062
[43] Cohen S. D., Comput. Phys. 10 pp 138– (1996)
[44] Zagaris A., Nonlinear Sci. 14 pp 59– (2004) · Zbl 1053.92051 · doi:10.1007/s00332-003-0582-9
[45] Goussis D., J. Comp. Phys. 214 pp 316– (2006) · Zbl 1089.65060 · doi:10.1016/j.jcp.2005.09.019
[46] Kourdis P. D., Physica D: Nonlinear Phenom. 239 pp 1789– (2010) · Zbl 1197.37105 · doi:10.1016/j.physd.2010.06.002
[47] Barthelmann V., Adv. Comput. Math. 12 pp 273– (2000) · Zbl 0944.41001 · doi:10.1023/A:1018977404843
[48] Yetter R., Combust. Sci. Technol. 79 pp 97– (1991) · doi:10.1080/00102209108951759
[49] Najm H., Combust. Theory Model. 14 pp 257– (2010) · Zbl 1197.80058 · doi:10.1080/13647830.2010.483021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.