×

A stream function implicit finite difference scheme for 2D incompressible flows of Newtonian fluids. (English) Zbl 1015.76059

The authors discuss applications of implicit difference methods to the well-known nonlinear stream function equation with special attention to the stationary case when these methods can be considered as iterative ones. Two basic steps in passing from \(t_n\) to \(t_{n+1}\) are chosen by analogy with the ADI methods and by using a linearization. The steps contain rather involved difference equations in each direction (three parallel lines are used). Possible simplifications of these systems are suggested. The main numerical results are obtained for stationary driven cavity flow and for a flow in a sudden expansion with grids like \(257\times 257\) (\(\operatorname{Re}=100,\;400, \;1000\)). A comparison with known results is made.
It should be noted that theoretically effective iterative methods for nonlinear difference systems (for the stationary stream function equation) were investigated fairly thoroughly (especially for rectangular regions) even in the sixties. Some of such methods, dealing for example with linearization and two-stage iterations, and the corresponding references can be found in [E. G. D’yakonov, Optimization in solving elliptic problems. Boca Raton, FL: CRC Press. xxviii (1996; Zbl 0852.65087)].

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

Citations:

Zbl 0852.65087

References:

[1] Overview of basic numerical methods. In Handbook of Numerical Heat Transfer, Wiley: New York, 1988; 1-88; 260-262, 318-321.
[2] Phillips, Numerical Heat Transfer 7 pp 251– (1984) · Zbl 0565.65063 · doi:10.1080/01495728408961824
[3] Hockey, Journal of the Association for Computational Mathematics 12 pp 95– (1965) · Zbl 0139.10902 · doi:10.1145/321250.321259
[4] A compact non-iterative Poisson solver. Institute for Plasma Research, SUIPR Report 294, Stanford University, CA, 1969.
[5] Numerical Heat Transfer and Fluid Flow. Hemisphere: New York, 1980. · Zbl 0521.76003
[6] Handbook of Applied Numerical Methods with Personal Computers. McGraw-Hill Book Company: New York, 1987; 469-494.
[7] Sebben, Numerical Heat Transfer 28 pp 323– (1995) · doi:10.1080/10407799508928837
[8] Stone, SIAM Journal of Numerical Analysis 5 pp 530– (1968) · Zbl 0197.13304 · doi:10.1137/0705044
[9] Shneider, Numerical Heat Transfer 4 pp 1– (1981)
[10] Lee, Numerical Heat Transfer 16 pp 161– (1989) · Zbl 0693.76092 · doi:10.1080/10407798908944933
[11] Peric, Numerical Heat Transfer 11 pp 251– (1987) · Zbl 0622.76099 · doi:10.1080/10407788708913554
[12] Chislovie rascheti v polytehnike y fisike. Energia: Moskow, 1964 (in Russian).
[13] Woods, Aero. Quart 5 pp 691– (1954)
[14] Chislennoe issledovanie viaskih nesjimaemih dvuhmernih potokov. In Primenenie cetochnih metodov v gasodinamike, University of Moskow, 1974; 7-36 (in Russian).
[15] Chislennoe modelirovanie processov teplo-y massoobmena, Mir: Moskow, 1984 (in Russian).
[16] Perez, Computers and Fluids 25 pp 527– (1996) · Zbl 0900.76427 · doi:10.1016/0045-7930(96)00005-9
[17] Durst, Journal of Fluid Mechanics 64 pp 111– (1974) · doi:10.1017/S0022112074002035
[18] Sparrow, Numerical Heat Transfer 12 pp 19– (1987) · Zbl 0618.76033 · doi:10.1080/10407788708913572
[19] Kwon, Journal of Fluids Engineering 106 pp 285– (1984) · doi:10.1115/1.3243117
[20] Benim, Computational Methods in Applied Mechanical Engineering 57 pp 223– (1986) · Zbl 0587.76037 · doi:10.1016/0045-7825(86)90015-0
[21] Ghia, Journal of Computational Physics 48 pp 387– (1982) · Zbl 0511.76031 · doi:10.1016/0021-9991(82)90058-4
[22] Tanoshi, International Journal for Numerical Methods in Fluids 11 pp 479– (1990) · Zbl 0711.76026 · doi:10.1002/fld.1650110503
[23] Krishna Satya Sai, Numerical Heat Transfer 25 pp 593– (1994) · doi:10.1080/10407789408955968
[24] A Stream function finite differences formulation for two-dimensional incompressible flow. International Mechanical Engineering Congress and Exposition, ASME, November 16-21, Dallas, USA, 1997.
[25] Laminar flow in conduit expansions, PhD Dissertation, University of Iowa, Iowa City, 1966.
[26] Kumar, Journal of Fluid Mechanics 97 pp 27– (1980) · Zbl 0419.76017 · doi:10.1017/S0022112080002418
[27] High Reynolds solutions of Navier-Stokes equations using the third-order upwind finite element method. Proceedings of the Computational Methods in Flow Analysis, Okoyama, 1988; 984-911.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.