×

The Laguerre-Pólya class and combinatorics. Abstracts from the workshop held March 13–19, 2022. (English) Zbl 1506.00066

Summary: The talks at the workshop were focused on zero localization and zero finding of entire functions, with applications to analytic number theory and combinatorics. The discussions included specific areas such as stable and hyperbolic polynomials, the Laguerre-Pólya class of entire functions, Pólya frequency sequences, total positivity for sequences and functions, and zeros of generating functions arising in probability and combinatorics.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
30-06 Proceedings, conferences, collections, etc. pertaining to functions of a complex variable
05-06 Proceedings, conferences, collections, etc. pertaining to combinatorics
26Cxx Polynomials, rational functions in real analysis
30Dxx Entire and meromorphic functions of one complex variable, and related topics
05Cxx Graph theory
11Mxx Zeta and \(L\)-functions: analytic theory
32Axx Holomorphic functions of several complex variables
37Fxx Dynamical systems over complex numbers
11Y65 Continued fraction calculations (number-theoretic aspects)
15A15 Determinants, permanents, traces, other special matrix functions
15B05 Toeplitz, Cauchy, and related matrices
30B70 Continued fractions; complex-analytic aspects
30H15 Nevanlinna spaces and Smirnov spaces
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
Full Text: DOI

References:

[1] M. Aissen, I. J. Schoenberg, A. M. Whitney, On the generating functions of totally positive sequences I, J. Analyse Math. 2 (1952), 93-103. · Zbl 0049.17201
[2] A. Dyachenko, Total Nonnegativity of Infinite Hurwitz Matrices of Entire and Meromorphic Functions, Complex Anal. Oper. Theory 8:5 (2014), 1097-1127. · Zbl 1299.15017
[3] A. Edrei, On the generating functions of totally positive sequences II, J. Analyse Math. 2(1952), 104-109. · Zbl 0049.17202
[4] A. Edrei, Proof of a conjecture of Schoenberg on the generating function of a totally positive sequence, Canad. J. Math. 5 (1953), 86-94. · Zbl 0053.23704
[5] F. Gantmakher, M. Krein, Sur les matrices complètement non négatives et oscillatoires, Compos. Math. 4 (1937), 445-476. · Zbl 0017.00102
[6] J. Grommer, Ganze transzendente Funktionen mit lauter reellen Nullstellen, J. Reine Angew. Math. 144 (1914), 114-166. · JFM 45.0650.02
[7] E. Laguerre, Sur les fonctions du genre zéro et de genre un, C. R. Acad. Sci. 95 (1882), 174-177.
[8] A. Yu. Okounkov, On representations of the infinite symmetric group, J. Math. Sci. 96:5 (1999), 100-107.
[9] N. G. de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197-226. · Zbl 0038.23302
[10] M. Chasse, Laguerre multiplier sequences and sector properties of entire functions, Complex Var. Elliptic Equ. 58 (2013), 875-885. · Zbl 1291.30032
[11] B, Conrey, Zeros of derivatives of Riemann’s ξ-function on the critical line, J. Number Theory 16 (1983), 49-74. · Zbl 0502.10022
[12] M. Griffin, K. Ono, L. Rolen, J. Thorner, Z. Tripp and I. Wagner, Jensen Polynomials for the Riemann Xi Function Michael Griffin, arXiv:1910.01227. · Zbl 1490.11086
[13] M. Griffin, K. Ono, L. Rolen, Larry and D. Zagier, Jensen polynomials for the Riemann zeta function and other sequences, Proc. Natl. Acad. Sci. USA 116 (2019), 11103-11110. · Zbl 1431.11105
[14] H. Ki, Y.-O. Kim and J. Lee, On the de Bruijn-Newman constant, Advances in Mathematics 222 (2009), 281-306 · Zbl 1175.30023
[15] Y.-O. Kim and J. Lee, A note on the zeros of Jensen polynomials, to appear in J. Korean Math. Soc.
[16] N. Levinson, More than one third of zeros of Riemann’s zeta-function are on σ = 1/2, Advances in Mathematics 13 (1974), 383-436 · Zbl 0281.10017
[17] H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 181-193. Amer. Math. Soc., Providence, R.I., 1973. · Zbl 0268.10023
[18] C. M. Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61 (1976), 245-251. · Zbl 0342.42007
[19] C. O’Sullivan, Zeros of Jensen polynomials and asymptotics for the Riemann xi function, Res. Math. Sci. 8 (2021), Paper No. 46, 27 pp. · Zbl 1479.11146
[20] D. Platt and T. Trudgian, The Riemann hypothesis is true up to 3 • 10 12 , Bulletin of the London Mathematical Society 53 (2021), 792-797. · Zbl 1482.11111
[21] V.P. Kostov and B.Z. Shapiro, Hardy-Petrovitch-Hutchinson’s problem and partial theta function, Duke Math. J. 162, No. 5 (2013), 825-861. · Zbl 1302.30008
[22] V.P. Kostov, About a partial theta function, Comptes Rendus Acad. Sci. Bulgare 66, No 5 (2013), 629-634. · Zbl 1313.26002
[23] V.P. Kostov, On the zeros of a partial theta function, Bull. Sci. Math. 137, No. 8 (2013), 1018-1030. · Zbl 1278.26019
[24] V.P. Kostov, On the spectrum of a partial theta function, Proc. Royal Soc. Edinb. A 144, No. 5 (2014), 925-933. · Zbl 1314.30009
[25] V.P. Kostov, Asymptotics of the spectrum of partial theta function, Revista Mat. Complut. 27, No. 2 (2014), 677-684. DOI: 10.1007/s13163-013-0133-3. · Zbl 1303.11053 · doi:10.1007/s13163-013-0133-3
[26] V.P. Kostov, A property of a partial theta function, Comptes Rendus Acad. Sci. Bulgare 67, No.10 (2014), 1319-1326. · Zbl 1324.33013
[27] V.P. Kostov, On a partial theta function and its spectrum, Proc. Royal Soc. Edinb. A 146, No. 3 (2016), 609-623. · Zbl 1403.11036
[28] V.P. Kostov, Asymptotic expansions of zeros of a partial theta function, Comptes Rendus Acad. Sci. Bulgare 68, No. 4 (2015), 419-426. · Zbl 1340.26001
[29] V.P. Kostov, On the double zeros of a partial theta function, Bull. Sci. Math. 140, No. 4 (2016), 98-111. · Zbl 1345.26004
[30] V.P. Kostov, Stabilization of the asymptotic expansions of the zeros of a partial theta func-tion, Comptes Rendus Acad. Sci. Bulgare 68, No. 10 (2015), 1217-1222. · Zbl 1374.26003
[31] V.P. Kostov, On the multiple zeros of a partial theta function, Funct. Anal. Appl. (Russian version 50, No. 2 (2016), 84-88, English version 50, No. 2 (2016), 153-156). · Zbl 1350.33029
[32] V.P. Kostov, The closest to 0 spectral number of the partial theta function, Comptes Rendus Acad. Sci. Bulgare 69, No. 9 (2016), 1105-1112. · Zbl 1374.30010
[33] V.P. Kostov, Uniform bounds on locations of zeros of partial theta function, Acta Univer-sitatis Matthiae Belii Ser. Math. (2016), 16-20.
[34] V.P. Kostov, A separation in modulus property of the zeros of a partial theta function, Analysis Mathematica 44, No. 4 (2018), 501-519. · Zbl 1438.11096
[35] V.P. Kostov, A domain containing all zeros of the partial theta function, Publicationes Mathematicae Debrecen 93, No. 1-2 (2018), 189-203. · Zbl 1413.26003
[36] V.P. Kostov, On the complex conjugate zeros of the partial theta function, Funct. Anal. Appl. (English version 53, No.2 (2019), 149-152, Russian version 53, No. 2 (2019), 87-91). · Zbl 1434.30003
[37] V.P. Kostov, On the zero set of the partial theta function, Serdica Math. J. 45 (2019), 225-258. · Zbl 1499.33070
[38] V.P. Kostov, Partial theta function and separation in modulus property of its zeros, Vietnam Journal of Mathematics 48, No.1 (2020), 145-157. · Zbl 1446.11070
[39] S.O. Warnaar, Partial theta functions. I. Beyond the lost notebook. arxiv:math/0105002v1[math.QA]. · Zbl 1089.05009
[40] A.D. Sokal, The leading root of the partial theta function, Adv. Math. 229 (2012), 2603-2621. arXiv:1106.1003[math.CO] , http://dx.doi.org/10.1016/j.aim.2012.01.012. · Zbl 1239.05018 · doi:10.1016/j.aim.2012.01.012
[41] A.D. Sokal, https://webspace.maths.qmul.ac.uk/p.j.cameron/csgnotes/sokal/.
[42] A.D. Sokal, https://physics.nyu.edu/faculty/sokal/Queen_Mary_Jul_9_13_talk.pdf . References
[43] O. Katkova, T. Lobova and A. Vishnyakova, On power series having sections with only real zeros, Comput. Methods Funct. Theory 3, No 2 (2003), 425-441. · Zbl 1058.30009
[44] T.H. Nguyen and A. Vishnyakova, On the entire functions from the Laguerre-Pólya class having the decreasing second quotients of Taylor coefficients, Journal of Mathematical Anal-ysis and Applications 465, No. 1 (2018), 348-359. · Zbl 1391.30040
[45] T.H. Nguyen and A. Vishnyakova, On a necessary condition for an entire function with the increasing second quotients of Taylor coefficients to belong to the Laguerre-Pólya class, Journal of Mathematical Analysis and Applications, 480, No. 2 (2019). · Zbl 1427.30048
[46] D.V. Choodnovsky and G.V. Choodnovsky, Pole expansions of nonlinear partial differential equations, Nuovo Cimento B 40 (1977), 339-353.
[47] F. Calogero, Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related “solvable” many-body problems, Nuovo Cimento B 43 (1978), 177-241.
[48] X. Chen and Y. Wang, Notes on the total positivity of Riordan arrays, Linear Algebra Appl. 569 (2019), 156-161. · Zbl 1411.05030
[49] X. Chen, J. Mao, L. Mu and Y. Wang, Total positivity of Krylov matrices, in preparation.
[50] J. Mao, L. Mu and Y. Wang, Yet another criterion for the total positivity of Riordan arrays, Linear Algebra Appl. 634 (2022), 106-111. · Zbl 1478.15048
[51] X. Chen, H. Liang and Y. Wang, Total positivity of Riordan arrays, European J. Combin. 46 (2015), 68-74. · Zbl 1307.05010
[52] X. Chen, H. Liang and Y. Wang, Total positivity of recursive matrices, Linear Algebra Appl. 471 (2015), 383-393. · Zbl 1307.05020
[53] D. Karp and S.M. Sitnik, Log-convexity and log-concavity of hypergeometric-like func-tions, Journal of Mathematical Analysis and Applications 364 (2010), 384-394. DOI:10.1016/j.jmaa.2009.10.057. · Zbl 1226.33003 · doi:10.1016/j.jmaa.2009.10.057
[54] D. Karp, Positivity of Toeplitz determinants formed by rising factorial series and properties of related polynomials, Zapiski Nuachnykh Seminarov POMI 404 (2012), 184-199. Springer version: Journal of Mathematical Sciences 193, No. 1 (2013), 106-114. DOI:10.1007/s10958-013-1438-y. · Zbl 1292.33006 · doi:10.1007/s10958-013-1438-y
[55] S.I. Kalmykov and D.B. Karp, Log-concavity for series in reciprocal gamma functions and applications, Integral Transforms and Special Functions 24, No. 11 (2013), 859-872. · Zbl 1286.26008
[56] S.I. Kalmykov and D.B. Karp, Log-convexity and log-concavity for series in gamma ratios and applications, Journal of Mathematical Analysis and Applications 406 (2013), 400-418. · Zbl 1309.33005
[57] S.I. Kalmykov and D.B. Karp, Log-concavity and Turán type inequalities for the gen-eralized hypergeometric function, Analysis Mathematica 43, No. 4 (2017), 567-580. DOI:10.1007/s10476-017-0503-z. · Zbl 1399.33012 · doi:10.1007/s10476-017-0503-z
[58] S.I. Kalmykov and D.B. Karp, Inequalities for series in q-shifted factorials and q-gamma functions, Journal of Mathematical Analysis and Applications 460 (2018), 332-351. DOI:10.1016/j.jmaa.2017.11.041. · Zbl 1380.33001 · doi:10.1016/j.jmaa.2017.11.041
[59] S.I. Kalmykov and D.B. Karp, Inequalities for some basic hypergeometric functions, Issues of Analysis (Problemy Analiza) 8(26), No. 1 (2019), 47-64. DOI:10.15393/j3.art.2019.5210. References · Zbl 1428.33032 · doi:10.15393/j3.art.2019.5210.References
[60] L.L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. in Appl. Math. 39 (2007), 453-476. · Zbl 1131.05010
[61] M. Pétréolle, A.D. Sokal and B.-X. Zhu, Lattice paths and branched continued fractions: An infinite sequence of generalizations of the Stieltjes-Rogers and Thron-Rogers polyno-mials, with coefficientwise Hankel-total positivity, to appear in Mem. Amer. Math. Soc. arXiv:1807.03271.
[62] A.D. Sokal, Continued fractions and Hankel-total positivity, 15th International Symposium on Orthogonal Polynomials, Special Functions and Applications, Hagenberg, Austria, 23 July 2019.
[63] A.D. Sokal, Coefficientwise total positivity (via continued fractions) for some Hankel ma-trices of combinatorial polynomials, in preparation (2018).
[64] Y. Wang and B.-X. Zhu, Log-convex and Stieltjes moment sequences, Adv. in Appl. Math. 81 (2016), 115-127. · Zbl 1352.05034
[65] B.-X. Zhu, Log-convexity and strong q-log-convexity for some triangular arrays, Adv. in Appl. Math. 50 (2013), 595-606. · Zbl 1277.05014
[66] B.-X. Zhu, Stieltjes moment properties and continued fractions from combinatorial triangles, preprint in Adv. in. Appl. Math. 130 (2021), Article 102232, 33pp. · Zbl 1469.05016
[67] B.-X. Zhu, Total positivity from the exponential Riordan arrays, SIAM J. Discrete Math. 35 (2021), 2971-3003. arXiv:2006.14485. · Zbl 1480.05016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.