×

Networks of biosensors: decentralized activation and social learning. (English) Zbl 1388.92012

Summary: This paper deals with the dynamics of biosensors and networks of biosensors, where individual biosensors are constructed out of protein molecules. Such biosensors are fully functioning nano-machines. The paper explores methods for decentralized self-activation of networks of biosensors using game-theoretic methods. A global game analysis in terms of a Bayesian game, and a correlated equilibrium analysis is carried out. Also an example of change detection using quickest time detection with social learning is presented. The unifying theme is to understand how local decisions affect global decision making in a multi-agent system.

MSC:

92C42 Systems biology, networks
91D30 Social networks; opinion dynamics
91A80 Applications of game theory
93A14 Decentralized systems

References:

[1] Angeletos, G. M.; Hellwig, C.; Pavan, A., Dynamic global games of regime change: Learning, multiplicity, and the timing of attacks, Econometrica, 75, 3, 711-756 (2007) · Zbl 1142.91352
[2] Arslan, G.; Shamma, J. S., Anticipatory learning in general evolutionary games, (Decision and Control, 2006 45th IEEE Conference on IEEE (2006)), 6289-6294
[3] Aumann, R., Subjectivity and correlation in randomized strategies, J Math Econ, 1, 67-96 (1974) · Zbl 0297.90106
[4] Aumann, R. J., Correlated equilibrium as an expression of bayesian rationality, Econometrica, 55, 1, 1-18 (1987) · Zbl 0633.90094
[5] Banerjee, A., A simple model of herd behavior, Quaterly J Econ, 107, 797-817 (1992)
[6] Benaim, M.; Hofbauer, J.; Sorin, S., Stochastic approximations and differential inclusions Part II: Applications, Math Oper Res, 31, 3, 673-695 (2006) · Zbl 1284.62511
[7] Bikchandani, S.; Hirshleifer, D.; Welch, I., Atheory of fads, fashion, custom, and cultural change as information cascades, J Political Econ, 100, 992-1026 (1992)
[8] Carlsson, H.; van Damme, E., Global games and equilibrium selection, Econometrica, 61, 5, 989-1018 (1993) · Zbl 0794.90083
[9] Chamley, C., Rational herds: Economic models of social learning (2004), Cambridge
[10] Chang, J. H.; Tassiulas, L., Maximum lifetime routing in wireless sensor networks, IEEE/ACMTrans Netw, 12, 609-619 (2004)
[11] Chen, M.; Gonzalez, S.; Vasilakos, A.; Cao, H.; Leung, V. C.M., Body area networks: A survey, Mobile Netw Appl, 16, 171-193 (2011)
[12] Chen, Y.; Zhao, Q.; Krishnamurthy, V.; Djonin, D., Transmission scheduling for optimizing sensor network lifetime: A stochastic shortest path approach, IEEE Trans Signal Proc, 55, 5, 2294-2309 (2007) · Zbl 1391.94012
[13] Chung, S. H.; Andersen, O.; Krishnamurthy V., Biological Membrane Ion Channels: Dynamics Structure and Applications (2007), Springer-Verlag
[14] Cornell, B., Optical biosensors: Present and future, (Lighler, F.; Taitt, C., Membrane based Biosensors (2002), Elsevier), 457
[15] Cornell, B.; Braach-Maksvytis, V. L.; King, L. G.; Osman, P. D.; Raguse, B.; Wieczorek, L.; Pace, R. J., A biosensor that uses ion-channel switches, em Nat, 387, 580-583 (1997)
[16] Cornell, B.; Krishna, G.; Osman, P.; Pace, R.; Wieczorek, L., Tethered bilayer lipid membranes as a support for membraneactive peptides, Biochem Soc Trans, 29, 4, 613 (2001)
[17] Franklin, G.; Powell, D.; Workman, M., Digital Control of Dynamic Systems (1997), Prentice Hall
[18] Fudenberg, D.; Levine, D., The theory of learning in games (1999), MIT Press
[19] Fudenberg, D.; Tirole, J., Game Theory (1991), MIT Press · Zbl 1339.91001
[20] Hart, S.; Mas-Colell, A., A simple adaptive procedure leading to correlated equilibrium, Econometrica, 68, 5, 1127-1150 (2000) · Zbl 1020.91003
[21] Hart, S.; Mas-Colell, A., A general class of adaptive strategies, J Econ Theory, 26-54 (2001) · Zbl 0994.91007
[22] Hart, S.; Mas-Colell, A., A reinforcement procedure leading to correlated equilibrium in Economic Essays, 181-200 (2001), Springer · Zbl 1023.91004
[23] Hart, S.; Mas-Colell, A., Uncoupled dynamics do not lead to nash equilibrium, Am Econ Rev, 93, 5, 1830-1836 (2003)
[24] Hille, B., Ionic Channels of Excitable Membranes (2001), Sinauer Associates, Inc: Sinauer Associates, Inc Sunderland, MA
[25] Karlin, S.; Rinott, Y., Classes of orderings of measures and related correlation inequalities I. Multivariate totally positive distributions, Journal Multivariate Analysis, 10, 467-498 (1980) · Zbl 0469.60006
[26] Karp, L.; Lee, I. H.; Mason, R., A global game with strategic substitutes and complements, Games and Econ Behavior, 60, 155-175 (2007) · Zbl 1155.91305
[27] Krishnamurthy, V., Self-configuration in dense sensor networks via global games, IEEE Trans Signal Proc, 56, 10, 4936-4950 (2008) · Zbl 1390.94252
[28] Krishnamurthy, V., Bayesian sequential detection with phasedistributed change time and nonlinear penalty-a lattice programming approach, IEEE Trans Inform Theory, 57, 10, 7096-7124 (2011) · Zbl 1365.62323
[29] Krishnamurthy, V.; Chung, S. H., Large-scale dynamical models and estimation for permeation in biological membrane ion channels, (Proceedings IEEE (2007)), 853-880, 95 (5)
[30] Krishnamurthy, V.; Cornell, B., Reconfigurable self-activating ion-channel-based biosensors, (Haykin, S.; Liu, K. J.R., Handbook on Array Processing and Sensor Networks, 26 (2009), Wiley)
[31] Krishnamurthy, V.; Djonin, D., Structured threshold policies for dynamic sensor scheduling-a partially observed Markov decision process approach, IEEE Trans Signal Proc, 55, 10, 4938-4957 (2007) · Zbl 1390.90335
[32] Krishnamurthy, V.; Luk, K.; Cornell, B.; Martin, D., Gramicidin ion channel based nanobiosensors: Construction, stochastic dynamical models and statistical detection algorithms, IEEE Sens J, 7, 9, 1281-1288 (2007)
[33] Krishnamurthy, V.; Maskery, M.; Yin, G., Decentralized activation in a ZigBee-enabled unattended ground sensor network: A correlated equilibrium game theoretic analysis, IEEE Trans Signal Proc, 56, 12, 6086-6101 (2008) · Zbl 1390.94253
[34] Krishnamurthy, V.; Monfared, S. M.; Cornell, B., Ion-Channel Biosensors-Part I: Construction, Operation, and Clinical Studies. IEEE Trans Nanotechnol, 9, 3, 303-312 (2010)
[35] Krishnamurthy, V.; Monfared, S. M.; Cornell, B., Ion-Channel Biosensors-Part II: Dynamic Modeling, Analysis and Statistical Signal Processing. IEEE Trans Nanotechnol, 9, 3, 313-321 (2010)
[36] Krishnamurthy, V.; Topley, K.; Yin, G., Consensus formation in a two-time-scale Markovian system, SIAM Journal Multiscale Modeling Simulation, 7, 4, 1898-1927 (2009) · Zbl 1182.62161
[37] Kushner, H. J.; Yin, G., Stochastic Approximation Algorithms and Recursive Algorithms and Applications (2003), Springer-Verlag · Zbl 1026.62084
[38] Li, N.; Hou, J., Localized fault-tolerant topology control in wireless ad hoc networks, IEEE Trans Parallel Distrib Computing, 17, 4, 307-320 (2006)
[39] Ljung, L., System Identification (1999), Prentice Hall · Zbl 1431.93015
[40] Lobel, I.; Acemoglu, D.; Dahleh, M.; Ozdagler, A. E., Preliminary results on social learning with partial observations, (Proceedings of the 2nd International Conference on Performance Evaluation Methodolgies and Tools. Proceedings of the 2nd International Conference on Performance Evaluation Methodolgies and Tools, Nantes, France (2007)), ACM
[41] MacKenzie, A. B.; Wicker, S. B., Game theory and the design of self-configuring, adaptive wireless networks, IEEE Commun Mag, 126-131 (2001)
[42] MacKenzie, A. B.; Wicker, S. B., Stability of multipacket slotted aloha with selfish users and perfect information, (Proceedings of IEEE INFOCOM (2003))
[43] Madan, R.; Cui, S.; Lall, S.; Goldsmith, A., Cross-layer design for lifetime maximization in interference limited wireless sensor networks, (Proc IEEE INFOCOM 2005 (2005)), 1964-1975, 3
[44] Maskery, M.; Krishnamurthy, V.; Zhang, Q., Decentralized dynamic spectrum access for cognitive radios: Cooperative design of a non-cooperative game, IEEE Trans Commun, 57, 2, 459-469 (2008)
[45] Morris, S.; Shin, H. S., Global games: Theory and applications, (Advances in Economic Theory and Econometrics: Proceedings of Eight World Congress of the Econometric Society (2000), Cambridge University Press)
[46] Muller, A.; Stoyan, D., Comparison Methods for Stochastic Models and Risk (2002), Wiley · Zbl 0999.60002
[47] Nau, R.; Canovas, S. G.; Hansen, P., On the geometry of nash equilibria and correlated equilibria, Int J Game Theory, 32, 4, 443-453 (2004) · Zbl 1098.91008
[48] Neher, E., Molecular biology meets microelectronics, Nat Biotechnol (2001)
[49] Separovic, F.; Cornell, B., Gated ion channel-based biosensor device, (Chung, S. H.; Andersen, O. V.; Krishnamurthy, V., Biological Membrane Ion Channels (2007), Springer-Verlag), 595-621
[50] Smith, L.; Sorenson, P., Pathological outcomes of observational learning, Econometrica, 68, 2, 371-398 (2000) · Zbl 1023.91510
[51] Wang, L.; Xiao, Y., A survey of energy-efficient scheduling mechanisms in sensor networks, Mobile Netw Appl, 11, 5, 723-740 (2006)
[52] Whitt, W., Multivariate monotone likelihood ratio and uniform conditional stochastic order, J Appl Probab, 19, 695-701 (1982) · Zbl 0487.60015
[53] Woodhouse, G.; King, L.; Wieczorek, L.; Osman, P.; Cornell, B., The ion channel switch biosensor, J Mol Recognit, 12, 1 (1999)
[54] Yin, G.; Krishnamurthy, V.; Ion, C., Regime switching stochastic approximation algorithms with application to adaptive discrete stochastic optimization, SIAM J Optim, 14, 4, 117-1215 (2004) · Zbl 1112.62330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.