×

Finite-size effects for anisotropic bootstrap percolation: Logarithmic corrections. (English) Zbl 1206.82049

Summary: We analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

MSC:

82B43 Percolation
68Q80 Cellular automata (computational aspects)

References:

[1] Adler, J.: Bootstrap percolation. Physica A 171, 452–470 (1991) · doi:10.1016/0378-4371(91)90295-N
[2] Adler, J., Duarte, J.A.M.S., van Enter, A.C.D.: Finite-size effects for some bootstrap percolation models. J. Stat. Phys. 60, 323–332 (1990) · doi:10.1007/BF01314923
[3] Adler, J., Duarte, J.A.M.S., van Enter, A.C.D.: Finite-size effects for some bootstrap percolation models, addendum. J. Stat. Phys. 62, 505–506 (1991) · doi:10.1007/BF01020891
[4] Adler, J., Lev, U.: Bootstrap percolation: visualizations and applications. Braz. J. Phys. 33, 641–644 (2003) · doi:10.1590/S0103-97332003000300031
[5] Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A: Math. Gen. 21, 3801–3813 (1988) · Zbl 0656.60106 · doi:10.1088/0305-4470/21/19/017
[6] Balogh, J., Bollobas, B.: Sharp thresholds in bootstrap percolation. Physica A 326, 305–312 (2003) · Zbl 1025.60042 · doi:10.1016/S0378-4371(03)00364-9
[7] Biroli, G., Fisher, D.S., Toninelli, C.: Jamming percolation and glass transitions in lattice models. Phys. Rev. Lett. 96, 035702 (2006) · doi:10.1103/PhysRevLett.96.035702
[8] Biroli, G., Fisher, D.S., Toninelli, C.: Cooperative behavior of kinetically constrained lattice gas models of glassy dynamics. J. Stat. Phys. 120, 167–238 (2005) · Zbl 1142.82011 · doi:10.1007/s10955-005-5250-z
[9] Cerf, R., Cirillo, E.M.N.: Finite size scaling in three-dimensional bootstrap percolation. Ann. Probab. 27, 1833–1850 (1999) · Zbl 0960.60088
[10] Connelly, R., Rybnikov, K., Volkov, S.: Percolation of the loss of tension in an infinite triangular lattice. J. Stat. Phys. 105, 143–171 (2001) · Zbl 1051.82012 · doi:10.1023/A:1012282026916
[11] De Gregorio, P., Lawlor, A., Bradley, P., Dawson, K.A.: Cellular automata with rare events; Resolution of an outstanding problem in the bootstrap percolation model. In: Cellular Automata. Amsterdam Proceedings, Lecture Notes in Computer Science, vol. 3305, pp. 365–374. Springer, Berlin (2004) · Zbl 1116.82327
[12] De Gregorio, P., Lawlor, A., Bradley, P., Dawson, K.A.: Clarification of the bootstrap percolation paradox. Phys. Rev. Lett. 93, 025501 (2004) · Zbl 1116.82327 · doi:10.1103/PhysRevLett.93.025501
[13] Duarte, J.A.M.S.: Simulation of a cellular automaton with an oriented bootstrap rule. Physica A 157, 1075–1079 (1989) · doi:10.1016/0378-4371(89)90033-2
[14] Gravner, J., Griffeath, D.: First passage times for threshold growth dynamics on \(\mathbb{Z}\)2. Ann. Probab. 24, 1752–1778 (1996) (see also Griffeath’s webpage: http://psoup.math.wisc.edu/kitchen.html ) · Zbl 0872.60077 · doi:10.1214/aop/1041903205
[15] Gravner, J., Griffeath, D.: Scaling laws for a class of cellular automaton growth rules. In: Proceedings 1998 Erdös Center Workshop on Random Walks, pp. 167–186 (1999) · Zbl 0949.68111
[16] Gravner, J., Holroyd, A.: Slow convergence in bootstrap percolation. arXiv: 0705.1347 (2007) (see also Holroyd’s webpage: http://www.math.ubc.ca/holroyd/ )
[17] Holroyd, A.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Relat. Fields 125, 195–224 (2003) · Zbl 1042.60065 · doi:10.1007/s00440-002-0239-x
[18] Holroyd, A.: The metastability threshold for modified bootstrap percolation in d dimensions. Electron. J. Probab. 11, 418–433 (2006) · Zbl 1112.60080
[19] Hulshof, W.J.T.: The similarities between an unbalanced and an oriented bootstrap percolation model. Groningen bachelor thesis (2007)
[20] Kozma, R., Puljic, M., Balister, P., Bollobas, B., Freeman, W.J.: Phase transitions in the neuropercolation model of neural populations with mixed local and nonlocal interactions. Biol. Cybern. 92, 367–379 (2005) · Zbl 1112.92011 · doi:10.1007/s00422-005-0565-z
[21] Kirkpatrick, S., Wilcke, W.W., Garner, R.B., Huels, H.: Percolation in dense storage arrays. Physica A 314, 220–229 (2002) · Zbl 1001.68003 · doi:10.1016/S0378-4371(02)01153-6
[22] Lee, I.H., Valentiniy, A.: Noisy contagion without mutation. Rev. Econ. Stud. 67, 47–56 (2000) · Zbl 0956.91026 · doi:10.1111/1467-937X.00120
[23] Lenormand, R.: Pattern growth and fluid displacement through porous media. Physica A 140, 114–123 (1986) · doi:10.1016/0378-4371(86)90211-6
[24] Mountford, T.S.: Critical lengths for semi-oriented bootstrap percolation. Stoch. Proc. Appl. 95, 185–205 (1995) · Zbl 0821.60092 · doi:10.1016/0304-4149(94)00061-W
[25] Mountford, T.S.: Comparison of semi-oriented bootstrap percolation models with modified bootstrap percolation. In: Boccara, N., Goles, E., Martinez, S. (eds.) Cellular Automata and Cooperative Systems. NATO ASI Proceedings, pp. 519–525. Kluwer Acadamic, Dordrecht (1993) · Zbl 0864.60085
[26] Ritort, F., Sollich, P.: Glassy dynamics of constrained models. Adv. Phys. 52, 219–342 (2003) · doi:10.1080/0001873031000093582
[27] Sabhapandit, S., Dhar, D., Shukla, P.: Hysteresis in the random-field Ising model and bootstrap percolation. Phys. Rev. Lett. 88, 197202 (2002) · doi:10.1103/PhysRevLett.88.197202
[28] Schonmann, R.H.: Critical points of 2-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58, 1239–1244 (1990) · Zbl 0712.68071 · doi:10.1007/BF01026574
[29] Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20, 174–193 (1992) · Zbl 0742.60109 · doi:10.1214/aop/1176989923
[30] Treaster, M., Conner, W., Gupta, I., Nahrstedt, K.: ContagAlert: using contagion theory for adaptive, distributed alert propagation. In: Fifth IEEE International Symposium on Network Computing and Applications, pp. 126–136 (2006)
[31] van Enter, A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48, 943–945 (1987) · Zbl 1084.82548 · doi:10.1007/BF01019705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.