×

Traveling waves in a mean field learning model. (English) Zbl 1469.91033

Summary: R. E. Lucas jun. and B. Moll have proposed in [“Knowledge growth and the allocation of time”, J. Polit. Econ. 122, No. 1, 1–51 (2014)] a system of forward-backward partial differential equations that model knowledge diffusion and economic growth. It arises from a microscopic model of learning for a mean-field type interacting system of individual agents. In this paper, we prove existence of traveling wave solutions to this system. They correspond to what is known in economics as balanced growth path solutions. We also study the dependence of the solutions and their propagation speed on various economic parameters of the system.

MSC:

91B62 Economic growth models
91A16 Mean field games (aspects of game theory)
35C07 Traveling wave solutions
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences

References:

[1] Achdou, Y.; Buera, F. J.; Lasry, J-M; Lions, P-L; Moll, B., Partial differential equation models in macroeconomics, Phil. Trans. R. Soc. A, 372, 20130397 (2014) · Zbl 1353.91027 · doi:10.1098/rsta.2013.0397
[2] Alvarez, F.; Buera, F.; Lucas, R. Jr, Idea Flows, Economic Growth and Trade (2014), National Bureau of Economics Research
[3] Benhabib, J.; Perla, J.; Tonetti, C., Reconciling Models of Diffusion and Innovation: A Theory of the Productivity Distribution and Technology Frontier (2019), Stanford GSB
[4] Berestycki, H.; Nicolaenko, B.; Scheurer, B.; Durham, N. H., Traveling wave solutions to reaction-diffusion systems modeling combustion, Nonlinear Partial Differential equations 1982, 189-208 (1983), Providence: American Mathematical Society, Providence · Zbl 0573.35042
[5] Berestycki, H.; Nicolaenko, B.; Scheurer, B., Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., 16, 1207-1242 (1985) · Zbl 0596.76096 · doi:10.1137/0516088
[6] Berestycki, H.; Nirenberg, L., Travelling fronts in cylinders, Ann. Inst. Henri Poincare C, 9, 497-572 (1992) · Zbl 0799.35073 · doi:10.1016/s0294-1449(16)30229-3
[7] Bertucci, C.; Lasry, J-M; Lions, P-L, Some remarks on mean field games, Commun. PDE, 44, 205-227 (2019) · Zbl 1411.91100 · doi:10.1080/03605302.2018.1542438
[8] Burger, M.; Lorz, A.; Wolfram, M-T, On a Boltzmann mean field model for knowledge growth, SIAM J. Appl. Math., 76, 1799-1818 (2016) · Zbl 1347.49057 · doi:10.1137/15m1018599
[9] Burger, M.; Lorz, A.; Wolfram, M-T, Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth, Kinet. Relat. Models, 10, 117-140 (2017) · Zbl 1352.49005 · doi:10.3934/krm.2017005
[10] Cardaliaguet, P.; Lehalle, C-A, Mean field game of controls and an application to trade crowding, Math. Finan. Econ., 12, 335-363 (2018) · Zbl 1397.91084 · doi:10.1007/s11579-017-0206-z
[11] Degond, P.; Herty, M.; Liu, J-G, Mean-field games and model predictive control, Commun. Math. Sci., 15, 1403-1422 (2017) · Zbl 1383.93029 · doi:10.4310/cms.2017.v15.n5.a9
[12] Degond, P.; Liu, J-G; Ringhofer, C., Evolution of wealth in a non-conservative economy driven by local Nash equilibria, Phil. Trans. R. Soc. A, 372, 20130394 (2014) · Zbl 1353.91051 · doi:10.1098/rsta.2013.0394
[13] Degond, P.; Liu, J-G; Ringhofer, C., Large-scale dynamics of mean-field games driven by local Nash equilibria, J. Nonlinear Sci., 24, 93-115 (2014) · Zbl 1295.91015 · doi:10.1007/s00332-013-9185-2
[14] Düring, B.; Markowich, P.; Pietschmann, J-F; Wolfram, M-T, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. A, 465, 3687-3708 (2009) · Zbl 1195.91127 · doi:10.1098/rspa.2009.0239
[15] Ebert, U.; Van Saarloos, W., Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146, 1-99 (2000) · Zbl 0984.35030 · doi:10.1016/s0167-2789(00)00068-3
[16] Hartman, P., Ordinary Differential Equations (2002), Philadelphia: SIAM, Philadelphia · Zbl 0125.32102
[17] Huang, M.; Malhamé, R. P.; Caines, P. E., Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6, 221-251 (2006) · Zbl 1136.91349 · doi:10.4310/CIS.2006.v6.n3.a5
[18] Jovanovic, B.; Rob, R., The growth and diffusion of knowledge, Rev. Econ. Stud., 56, 569-582 (1989) · Zbl 0691.90014 · doi:10.2307/2297501
[19] Karp, L.; Lee, I. H., Learning-by-doing and the choice of technology: the role of patience, J. Econ. Theory, 100, 73-92 (2001) · Zbl 0996.91081 · doi:10.1006/jeth.2000.2727
[20] König, M. D.; Lorenz, J.; Zilibotti, F., Innovation vs imitation and the evolution of productivity distributions, Theor. Econ., 11, 1053-1102 (2016) · Zbl 1395.91272 · doi:10.3982/te1437
[21] Lasry, J-M; Lions, P-L, Mean-field games with a major player, C. R. Math., 356, 886-890 (2018) · Zbl 1410.91048 · doi:10.1016/j.crma.2018.06.001
[22] Lucas, R. Jr; Moll, B., Knowledge growth and the allocation of time, J. Polit. Econ., 122 (2014) · doi:10.1086/674363
[23] Luttmer, E. G J., Technology diffusion and growth, J. Econ Theory, 147, 602-622 (2012) · Zbl 1258.91156 · doi:10.1016/j.jet.2011.02.003
[24] Luttmer, E. G J., Eventually, Noise and Imitation Implies Balanced Growth (2012), Federal Reserve Bank of Minneapolis
[26] Perla, J.; Tonetti, C., Equilibrium imitation and growth, J. Polit. Econ., 122, 52-76 (2014) · doi:10.1086/674362
[27] Staley, M., Growth and the diffusion of ideas, J. Math. Econ., 47, 470-478 (2011) · Zbl 1236.91104 · doi:10.1016/j.jmateco.2011.06.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.