×

A particle model for the herding phenomena induced by dynamic market signals. (English) Zbl 1426.91313

Summary: In this paper, we study herding phenomena of agents in financial markets arising from the combined effect of (1) non-coordinated collective interactions between agents and (2) concurrent reactions of agents to dynamic market signals. By interpreting the expected price of an asset and the favorability on the asset as the position and the velocity in phase space, respectively, we construct an agent-based particle model for explaining herding behavior in finance. We then define two types of herding functionals to this model, and show that they satisfy a Gronwall type estimate and a LaSalle type invariance property, respectively. As a result, we show the herding behavior of the agents. Various numerical tests are presented to numerically verify theoretical results.

MSC:

91G99 Actuarial science and mathematical finance
91D99 Mathematical sociology (including anthropology)

References:

[1] Abreu, D., Brunnermeier, M.K.: Bubbles and crashes. Econometrica 71, 173-204 (2003) · Zbl 1136.91389 · doi:10.1111/1468-0262.00393
[2] Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005) · doi:10.1103/RevModPhys.77.137
[3] Ahn, S., Choi, H., Ha, S.-Y., Lee, H.: On collision-avoiding initial configurations to Cucker-Smale type flocking models. Commun. Math. Sci. 10, 625-643 (2012) · Zbl 1321.92084 · doi:10.4310/CMS.2012.v10.n2.a10
[4] Ahn, S., Bae, H.-O., Ha, S.-Y., Kim, Y., Lim, H.: Application of flocking mechanism to the modeling of stochastic volatility. Math. Models Methods Appl. Sci. 23, 1603-1628 (2013) · Zbl 1266.91097 · doi:10.1142/S0218202513500176
[5] Avery, C., Zemsky, P.: Multidimensional uncertainty and herd behavior in financial markets. Am. Econ. Rev. 88(4), 724-748 (1998)
[6] Bae, H.-O., Ha, S.-Y., Kim, Y., Lee, S.-H., Lim, H., Yoo, J.: A mathematical model for volatility flocking with a regime switching mechanism in a stock market. Math. Models Methods Appl. Sci. 25, 1299-1335 (2015) · Zbl 1321.91097 · doi:10.1142/S0218202515500335
[7] Bae, H.-O., Cho, S.-Y., Kim, J., Yun, S.-B.: A kinetic description for the herding behavior in financial market. J. Stat. Phys (2019). https://doi.org/10.1007/s10955-019-02305-4 · Zbl 1422.91795 · doi:10.1007/s10955-019-02305-4
[8] Banerjee, A.V.: A simple model of herd behavior. Q. J. Econ. 107, 797-818 (1992) · doi:10.2307/2118364
[9] Barbaro, A.B.T., Taylor, K., Trethewey, P.F., Youseff, L., Birnir, B.: Discrete and continuous models of the dynamics of pelagic fish. Math. Comput. Simul. 79, 3397-3414 (2009) · Zbl 1281.92058 · doi:10.1016/j.matcom.2008.11.018
[10] Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Math. Models Methods Appl. Sci. 20, 1179-1207 (2010) · Zbl 1402.92065 · doi:10.1142/S0218202510004568
[11] Bellomo, N., Dogbe, C.: On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53(3), 409-463 (2011) · Zbl 1231.90123 · doi:10.1137/090746677
[12] Bikhchandani, S., Hirshleifer, D., Welch, I.: A theory of fads, fashion, custom and cultural change as informational cascades. J. Polit. Econ. 100, 992-1027 (1992) · doi:10.1086/261849
[13] Brunnermeier, M.K.: Asset Pricing under Asymmetric. Information Crashes, Technical Analysis and Herding. Oxford University Press on Demand, Bubbles (2001) · doi:10.1093/0198296983.001.0001
[14] Burger, M., Markowich, P., Pietschmann, J.-F.: Continuous limit of a crowd motion and herding model: analysis and numerical simulations. Kinet. Relat. Models 4, 1025-1047 (2011) · Zbl 1347.35128 · doi:10.3934/krm.2011.4.1025
[15] Burini, D., De Lillo, S., Gibelli, L.: Collective learning modeling based on the kinetic theory of active particles. Phys. Life Rev. 16, 123-139 (2016) · doi:10.1016/j.plrev.2015.10.008
[16] Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42, 218-236 (2010) · Zbl 1223.35058 · doi:10.1137/090757290
[17] Carrillo, J.A., Choi, Y.-P., Mucha, P.B., Peszek, J.: Sharp conditions to avoid collisions in singular Cucker-Smale interactions. Nonlinear Anal. Real World Appl. 37, 317-328 (2017) · Zbl 1383.34069 · doi:10.1016/j.nonrwa.2017.02.017
[18] Carrillo, José A.; Fornasier, Massimo; Toscani, Giuseppe; Vecil, Francesco, Particle, kinetic, and hydrodynamic models of swarming, 297-336 (2010), Boston · Zbl 1211.91213 · doi:10.1007/978-0-8176-4946-3_12
[19] Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Tavarone, R.: From empirical data to inter-individual interactions: unveiling the rules of collective animal behavior. Math. Models Methods Appl. Sci. 20, 1491-1510 (2010) · Zbl 1197.92053 · doi:10.1142/S0218202510004660
[20] Choi, Young-Pil; Ha, Seung-Yeal; Li, Zhuchun, Emergent Dynamics of the Cucker-Smale Flocking Model and Its Variants, 299-331 (2017), Cham · doi:10.1007/978-3-319-49996-3_8
[21] Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52, 852-862 (2007) · Zbl 1366.91116 · doi:10.1109/TAC.2007.895842
[22] Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. 2, 197-227 (2007) · Zbl 1166.92323 · doi:10.1007/s11537-007-0647-x
[23] Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193-1215 (2008) · Zbl 1157.35492 · doi:10.1142/S0218202508003005
[24] Degond, P., Appert-Rolland, C., Moussaid, M., Pettré, J., Theraulaz, G.: A hierarchy of heuristic-based models of crowd dynamics. J. Stat. Phys 152(6), 1033-1068 (2013) · Zbl 1274.91094 · doi:10.1007/s10955-013-0805-x
[25] Delitala, M., Lorenzi, T.: A mathematical model for value estimation with public information and herding. Kinet. Relat. Models 7, 29-44 (2014) · Zbl 1292.35303 · doi:10.3934/krm.2014.7.29
[26] D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions, patterns, stability, and collapse. Phys. Rev. Lett. 96(10), 104302 (2006) · doi:10.1103/PhysRevLett.96.104302
[27] Devenow, A., Welch, I.: Rational herding in financial economics. Eur. Econ. Rev. 40, 603-615 (1996) · doi:10.1016/0014-2921(95)00073-9
[28] During, B., Jungel, A., Trussardi, L.: A kinetic equation for economic value estimate with irrationality and herding. Kinet. Relat. Models 10, 239-261 (2017) · Zbl 1352.35089 · doi:10.3934/krm.2017010
[29] Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1, 415-435 (2008) · Zbl 1402.76108 · doi:10.3934/krm.2008.1.415
[30] Ha, S.-Y., Liu, J.G.: A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7, 297-325 (2009) · Zbl 1177.92003 · doi:10.4310/CMS.2009.v7.n2.a2
[31] Ha, S.-Y., Lee, K., Levy, D.: Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system. Commun. Math. Sci. 7, 453-469 (2009) · Zbl 1192.34067 · doi:10.4310/CMS.2009.v7.n2.a9
[32] Ha, S.-Y., Ha, T., Kim, J.-H.: On the complete synchronization of the Kuramoto phase model. Physica D 239(17), 1692-1700 (2010) · Zbl 1213.34068 · doi:10.1016/j.physd.2010.05.003
[33] Hegselmann, R., Flache, A.: Understanding complex social dynamics: a plea for cellular automata based modelling. J. Artif. Soc. Soc. Simul. 1(3), 1 (1998)
[34] Hemphill, C.S., Suk, J.: The law, culture, and economics of fashion. Stan. L. Rev. 61, 1147-1200 (2009)
[35] Hwang, S., Salmon, M.: Market stress and herding. J. Empir. Financ. 11, 585-616 (2004) · doi:10.1016/j.jempfin.2004.04.003
[36] Krause, U.: A discrete nonlinear and non-autonomous model of consensus formation. Commun. Differ. Equ. 2000, 227-236 (2000) · Zbl 0988.39004 · doi:10.1201/b16999-21
[37] LaSalle, J.P.: Some extensions of Liapunov’s second method. IRE Trans. 7, 520-527 (1960)
[38] Lee, I.H.: Market crashes and informational avalance. The Rev. Econ. Stud. 65, 741-759 (1995) · Zbl 0913.90051 · doi:10.1111/1467-937X.00066
[39] Marsan, G.A., Bellomo, N., Egidi, M.: Towards a mathematical theory of complex socio-economical systems by functional subsystems representation. Kinet. Relat. Models 1(2), 249-278 (2008) · Zbl 1141.82357 · doi:10.3934/krm.2008.1.249
[40] Merton, R.C., Samuelson, P.A.: Continuous-Time Finance. Blackwell Publishing, New Jersey (1992)
[41] Milgrom, P.R., Stokey, N.: Information, trade and common knowledge. J. Econ. Theory 26, 17-27 (1982) · Zbl 0485.90018 · doi:10.1016/0022-0531(82)90046-1
[42] Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144, 923-947 (2011) · Zbl 1230.82037 · doi:10.1007/s10955-011-0285-9
[43] Naldi, G., Pareschi, L., Toscani, G. (eds.): Mathematical modeling of collective behavior in socio-economic and life sciences. Springer, Berlin (2010) · Zbl 1200.91010
[44] Pareschi, L., Toscani, G.: Interacting Multiagent Systems: kinetic equations and Monte Carlo methods. Oxford University Press, Oxford (2013) · Zbl 1330.93004
[45] Santos, M.S., Woodford, M.: Rational asset pricing bubbles. Econometrica 65, 19-57 (1997) · Zbl 0876.90023 · doi:10.2307/2171812
[46] Shiller, C.: Irational exuberance. Princeton University Press, Princeton (2000)
[47] Tirole, J.: On the possibility of speculation under rational expectations. Econometrica 50, 1163-1182 (1982) · Zbl 0488.90026 · doi:10.2307/1911868
[48] Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58, 4828-4858 (1998) · doi:10.1103/PhysRevE.58.4828
[49] Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4, 481-496 (2006) · Zbl 1195.91128 · doi:10.4310/CMS.2006.v4.n3.a1
[50] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226-1229 (1995) · doi:10.1103/PhysRevLett.75.1226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.