×

Network characteristics enabling efficient coordination: a simulation study. (English) Zbl 1391.91069

Summary: Using data generated by extensive simulations of a process where individuals interact globally in a coordination game and iteratively imitate the action of the most successful individual in their local neighbourhood, we study the characteristics of the observation network and distribution of initial choices that facilitate (a speedy) convergence to efficient coordination. Knowing these characteristics is crucial when intervening in social network structures with the intention to nudge society to a socially preferred outcome. The most important factor appears to be the share of individuals that are initially seeded with the socially desirable action. Only for a small window of this share, other factors, including the degree distribution in the network and the segregation of individuals using similar actions, have an influence on the dynamic process of achieving efficient coordination. Moreover, networks possessing the properties of a scale-free network are more likely to yield an efficient outcome compared to small-world networks.

MSC:

91A90 Experimental studies
91D30 Social networks; opinion dynamics

References:

[1] Alós-Ferrer C, Weidenholzer S (2006) Imitation, local interactions, and efficiency. Econ Lett 93(2):163-168 · Zbl 1254.91055 · doi:10.1016/j.econlet.2006.04.006
[2] Alós-Ferrer C, Weidenholzer S (2008) Contagion and efficiency. J Econ Theory 143(1):251-274 · Zbl 1151.91364 · doi:10.1016/j.jet.2007.12.003
[3] Antonioni A, Cacault MP, Lalive R, Tomassini M (2013) Coordination on networks: does topology matter? PLoS One 8(2):e55033 · doi:10.1371/journal.pone.0055033
[4] Ballester PC, Vorsatz M (2014) Random-walk-based segregation measures. Rev Econ Stat 96(3):383-401 · doi:10.1162/REST_a_00399
[5] Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509-512 · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[6] Barabási A, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60-69 · doi:10.1038/scientificamerican0503-60
[7] Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. CRC Press, Boca Raton · Zbl 0541.62042
[8] Buskens V, Snijders C (2008) Effects of network characteristics on reaching the payoff-dominant equilibrium in coordination games: a simulation study. ISCORE discussion paper · Zbl 1391.91055
[9] Davis GF, Yoo M, Baker W (2003) The small world of the American corporate elite: 1982-2001. Strat Organ 1(3):301-326 · doi:10.1177/14761270030013002
[10] Fleming L, Marx M (2006) Managing creativity in small worlds. Calif Manag Rev 48(4):6-27 · doi:10.2307/41166358
[11] Kendall MG (1955) Further contributions to the theory of paired comparisons. Biometrics 11(1):43-62 · doi:10.2307/3001479
[12] Khan A (2014) Coordination under global random interaction and local imitation. Int J Game Theory 43(4):721-745 · Zbl 1308.91032 · doi:10.1007/s00182-013-0399-1
[13] Kogut B, Walker G (2001) The small world of German corporate networks in the global economy. Am Sociol Rev 66(3):317-335 · doi:10.2307/3088882
[14] Lee IH, Valentinyi A (2000) Noisy contagion without mutation. Rev Econ Stud 67(1):47-56 · Zbl 0956.91026 · doi:10.1111/1467-937X.00120
[15] Newman, MEJ; Ben-Naim, E. (ed.); Frauenfelder, H. (ed.); Toroczkai, Z. (ed.), Who is the best connected scientist? A study of scientific coauthorship networks, 337-370 (2004), Berlin · Zbl 1141.00301 · doi:10.1007/978-3-540-44485-5_16
[16] Robson A, Vega-Redondo F (1996) Efficient equilibrium selection in evolutionary games with random matching. J Econ Theory 70(1):65-92 · Zbl 0859.90138 · doi:10.1006/jeth.1996.0076
[17] Roca CP, Sanchez A, Cuesta JA (2012) Individual strategy update and emergence of cooperation in social networks. J Math Sociol 36(1):1-21 · doi:10.1080/0022250X.2010.520830
[18] Roca CP, Cuesta JA, Sanchez A (2009) Promotion of cooperation on networks? The myopic best response case. Eur Phys J B 71(4):587-595 · doi:10.1140/epjb/e2009-00189-0
[19] Santos FC, Pacheco JM, Lenaerts T (2006) Evolutionary dynamics of social dilemmas in structured populations. Proc Natl Acad Sci 103(9):3490-3494 · doi:10.1073/pnas.0508201103
[20] Soramaki K, Bech ML, Arnold J, Glass RJ, Beyeler WE (2007) The topology of interbank payment flows. Phys A 1(1):317-333 · doi:10.1016/j.physa.2006.11.093
[21] Tomassini M, Pestelacci E (2010) Evolution of coordination in social networks: a numerical study. Int J Mod Phys C 21(10):1277-1296 · Zbl 1311.91035 · doi:10.1142/S012918311001583X
[22] Uzzi B, Amaral LAN, Reed-Tsochas F (2007) Small-world networks and management science research: a review. Eur Manag Rev 4(2):77-91 · doi:10.1057/palgrave.emr.1500078
[23] Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440-442 · Zbl 1368.05139 · doi:10.1038/30918
[24] Wei T (1952) The algebraic foundation of ranking theory. Ph.D. Thesis, Cambridge University, Cambridge, UK
[25] Weidenholzer S (2010) Coordination games and local interactions: a survey of the game theoretic literature. Games 1(4):551-585 · Zbl 1311.91059 · doi:10.3390/g1040551
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.