×

The Euclidean bottleneck Steiner path problem and other applications of \((\alpha ,\beta )\)-pair decomposition. (English) Zbl 1311.68095

Summary: We consider a geometric optimization problem that arises in network design. Given a set \(P\) of \(n\) points in the plane, source and destination points \(s, t\in P\), and an integer \(k>0\), one has to locate \(k\) Steiner points, such that the length of the longest edge of a bottleneck path between \(s\) and \(t\) is minimized. In this paper, we present an \(O(n\log ^{2} n)\)-time algorithm that computes an optimal solution, for any constant \(k\). This problem was previously studied by Y. T. Hou, C. M. Chen and B. Jeng in [Wirel. Netw. 16, No. 4, 1033–1043 (2010)], who gave an \(O(n ^{2} \log n)\)-time algorithm. We also study the dual version of the problem, where a value \(\lambda >0\) is given (instead of \(k\)), and the goal is to locate as few Steiner points as possible, so that the length of the longest edge of a bottleneck path between \(s\) and \(t\) is at most \(\lambda \).
Our algorithms are based on two new geometric structures that we develop – an \((\alpha ,\beta )\)-pair decomposition of \(P\) and a floor \((1+\varepsilon )\)-spanner of \(P\). For real numbers \(\beta >\alpha >0\), an \((\alpha ,\beta )\)-pair decomposition of \(P\) is a collection \(\mathcal{W}=\{(A_{1},B_{1}),\ldots,(A_{m},B_{m})\}\) of pairs of subsets of \(P\), satisfying the following: (i) For each pair \((A_{i},B_{i}) \in\mathcal {W}\), both minimum enclosing circles of \(A _{i }\) and \(B _{i }\) have a radius at most \(\alpha \), and (ii) for any \(p, q\in P\), such that \(|pq|\leq \beta \), there exists a single pair \((A_{i},B_{i}) \in\mathcal{W}\), such that \(p\in A _{i }\) and \(q\in B _{i }\), or vice versa. We construct (a compact representation of) an \((\alpha ,\beta )\)-pair decomposition of \(P\) in time \(O((\beta /\alpha )^{3} n \log n)\). In some applications, a simpler (though weaker) grid-based version of an \((\alpha ,\beta )\)-pair decomposition of \(P\) is sufficient. We call this version a weak \((\alpha ,\beta )\)-pair decomposition of \(P\).
For \(\varepsilon >0\), a floor \((1+\varepsilon )\)-spanner of \(P\) is a \((1+\varepsilon )\)-spanner of the complete graph over \(P\) with weight function \(w(p,q)=\lfloor |pq|\rfloor \). We construct such a spanner with \(O(n/\varepsilon ^{2})\) edges in time \(O((1/\varepsilon ^{2})n\log ^{2} n)\), even though \(w\) is not a metric.
Finally, we present two additional applications of an \((\alpha ,\beta )\)-pair decomposition of \(P\). In the first, we construct a strong spanner of the unit disk graph of \(P\), with the additional property that the spanning paths also approximate the number of substantial hops, i.e., hops of length greater than a given threshold. In the second application, we present an \(O((1/\varepsilon ^{2})n \log n)\)-time algorithm for computing a one-sided approximation for distance selection (i.e., given \(k, 1 \leq k \leq{n \choose2}\), find the \(k\)’th smallest Euclidean distance induced by \(P\)), significantly improving the running time of the algorithm of S. Bespamyatnikh and M. Segal [Algorithmica 33, No. 2, 263–269 (2002; Zbl 1052.68145)].

MSC:

68R10 Graph theory (including graph drawing) in computer science
05C62 Graph representations (geometric and intersection representations, etc.)
51M16 Inequalities and extremum problems in real or complex geometry
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
90C27 Combinatorial optimization
90C35 Programming involving graphs or networks

Citations:

Zbl 1052.68145
Full Text: DOI

References:

[1] Abam, M.A., Har-Peled, S.: New constructions of SSPDs and their applications. Comput. Geom. 45(5-6), 200-214 (2012) · Zbl 1273.65031 · doi:10.1016/j.comgeo.2011.12.003
[2] Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant geometric spanners. Discrete Comput. Geom. 41(4), 556-582 (2009) · Zbl 1220.05021 · doi:10.1007/s00454-009-9137-7
[3] Araújo, F.; Rodrigues, L., Fast localized Delaunay triangulation, 81-93 (2004) · Zbl 1129.68372
[4] Bae, S.W., Lee, C., Choi, S.: On exact solutions to the Euclidean bottleneck Steiner tree problem. Inf. Process. Lett. 110, 672-678 (2010) · Zbl 1234.68126 · doi:10.1016/j.ipl.2010.05.014
[5] Bespamyatnikh, S., Segal, M.: Fast algorithms for approximating distances. Algorithmica 33, 263-269 (2002) · Zbl 1052.68145 · doi:10.1007/s00453-001-0114-7
[6] Bollobás, B., Scott, A.: On separating systems. Eur. J. Comb. 28(4), 1068-1071 (2007) · Zbl 1113.05097 · doi:10.1016/j.ejc.2006.04.003
[7] Bose, P.; Carmi, P.; Smid, M.; Xu, D., Communication-efficient construction of the plane localized Delaunay graph, 282-293 (2010) · Zbl 1283.05255
[8] Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42, 67-90 (1995) · Zbl 0886.68078 · doi:10.1145/200836.200853
[9] Chan, T.: On enumerating and selecting distances. Int. J. Comput. Geom. Appl. 11(3), 291-304 (2001) · Zbl 1073.52506 · doi:10.1142/S0218195901000511
[10] Chen, D., Du, D.-Z., Hu, X., Lin, G., Wang, L., Xue, G.: Approximations for Steiner trees with minimum number of Steiner points. J. Glob. Optim. 18, 17-33 (2000) · Zbl 0971.90098 · doi:10.1023/A:1008384012064
[11] Cheng, X., Du, D.-Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. Wirel. Netw. 14, 347-355 (2008) · doi:10.1007/s11276-006-0724-8
[12] Clarkson, K. L., Approximation algorithms for shortest path motion planning, 56-65 (1987)
[13] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009) · Zbl 1187.68679
[14] de Berg, M., Cheong, O., Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Berlin (2008) · Zbl 1140.68069
[15] Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: sorted matrices. SIAM J. Comput. 13, 14-30 (1984) · Zbl 0537.68059 · doi:10.1137/0213002
[16] Har-Peled, S.; Raichel, B. A., Net and prune: a linear time algorithm for Euclidean distance problems, 605-614 (2013) · Zbl 1293.68167 · doi:10.1145/2488608.2488684
[17] Hou, Y.-T., Chen, C.-M., Jeng, B.: An optimal new-node placement to enhance the coverage of wireless sensor networks. Wirel. Netw. 16, 1033-1043 (2010) · doi:10.1007/s11276-009-0186-x
[18] Huang, H., Richa, A.W., Segal, M.: Dynamic coverage in ad-hoc sensor networks. Mob. Netw. Appl. 10(1), 9-17 (2005) · doi:10.1023/B:MONE.0000048542.38105.99
[19] Katz, M.J., Sharir, M.: An expander-based approach to geometric optimization. SIAM J. Comput. 26(5), 1384-1408 (1997) · Zbl 0888.68116 · doi:10.1137/S0097539794268649
[20] Keil, J. M., Approximating the complete Euclidean graph, No. 318, 208-213 (1988) · Zbl 0655.68087
[21] Li, X.-Y.: Wireless Ad Hoc and Sensor Networks: Theory and Applications. Cambridge University Press, Cambridge (2008) · doi:10.1017/CBO9780511754722
[22] Li, X.-Y., Calinescu, G., Wan, P.-J., Wang, Y.: Localized Delaunay triangulation with application in ad-hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 14(10), 1035-1047 (2003) · doi:10.1109/TPDS.2003.1239871
[23] Li, Z.-M., Zhu, D.-M., Ma, S.-H.: Approximation algorithm for bottleneck Steiner tree problem in the Euclidean plane. J. Comput. Sci. Technol. 19(6), 791-794 (2004) · doi:10.1007/BF02973441
[24] Lin, G.H., Xue, G.: Steiner tree problem with minimum number of Steiner points and bounded edge-length. Inf. Process. Lett. 69, 53-57 (1999) · Zbl 1339.68209 · doi:10.1016/S0020-0190(98)00201-4
[25] Megerian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Worst and best-case coverage in sensor networks. IEEE Trans. Mob. Comput. 4(1), 84-92 (2005) · doi:10.1109/TMC.2005.15
[26] Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007) · Zbl 1140.68068 · doi:10.1017/CBO9780511546884
[27] Roditty, L., Segal, M.: On bounded leg shortest path problems. Algorithmica 59, 583-600 (2011) · Zbl 1211.68474 · doi:10.1007/s00453-009-9322-3
[28] Varadarajan, K. R., A divide-and-conquer algorithm for min-cost perfect matching in the plane, 320-331 (1998)
[29] Wang, L., Du, D.-Z.: Approximations for a bottleneck Steiner tree problem. Algorithmica 32, 554-561 (2002) · Zbl 1004.68126 · doi:10.1007/s00453-001-0089-4
[30] Wang, L., Li, Z.-M.: Approximation algorithm for a bottleneck k-Steiner tree problem in the Euclidean plane. Inf. Process. Lett. 81, 151-156 (2002) · Zbl 1032.68163 · doi:10.1016/S0020-0190(01)00209-5
[31] Yao, A.C.: On constructing minimum spanning trees in k-dimensional space and related problems. SIAM J. Comput. 11(4), 721-736 (1982) · Zbl 0492.68050 · doi:10.1137/0211059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.