×

Decay rates for stabilization of linear continuous-time systems with random switching. (English) Zbl 1425.93228

Summary: For a class of linear switched systems in continuous time a controllability condition implies that state feedbacks allow to achieve almost sure stabilization with arbitrary exponential decay rates. This is based on the multiplicative ergodic theorem applied to an associated system in discrete time. This result is related to the stabilizability problem for linear persistently excited systems.

MSC:

93D15 Stabilization of systems by feedback
93B05 Controllability
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C05 Linear systems in control theory

References:

[1] L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. · Zbl 0906.34001
[2] Y. Bakhtin; T. Hurth, Invariant densities for dynamical systems with random switching, Nonlinearity, 25, 2937-2952 (2012) · Zbl 1251.93132 · doi:10.1088/0951-7715/25/10/2937
[3] M. Benaïm; S. Le Borgne; F. Malrieu; P.-A. Zitt, Qualitative properties of certain piecewise deterministic Markov processes, Ann. Inst. Henri Poincaré Probab. Stat., 51, 1040-1075 (2015) · Zbl 1325.60123 · doi:10.1214/14-AIHP619
[4] P. Bolzern; P. Colaneri; G. De Nicolao, On almost sure stability of continuous-time Markov jump linear systems, Automatica J. IFAC, 42, 983-988 (2006) · Zbl 1116.93049 · doi:10.1016/j.automatica.2006.02.007
[5] A. Chaillet; Y. Chitour; A. Loría; M. Sigalotti, Uniform stabilization for linear systems with persistency of excitation: the neutrally stable and the double integrator cases, Math. Control Signals Systems, 20, 135-156 (2008) · Zbl 1147.93039 · doi:10.1007/s00498-008-0024-1
[6] D. Chatterjee; D. Liberzon, On stability of randomly switched nonlinear systems, IEEE Trans. Automat. Control, 52, 2390-2394 (2007) · Zbl 1366.93692 · doi:10.1109/TAC.2007.904253
[7] D. Cheng; L. Guo; Y. Lin; Y. Wang, A note on overshoot estimation in pole placements, J. Control Theory Appl., 2, 161-164 (2004) · Zbl 1260.93069 · doi:10.1007/s11768-004-0062-2
[8] D. Cheng; L. Guo; Y. Lin; Y. Wang, Erratum to: “A note on overshoot estimation in pole placements” [J. Control Theory App., 2 (2004), 161-164], J. Control Theory Appl., 3, 258 (2005) · Zbl 1260.93069 · doi:10.1007/s11768-004-0062-2
[9] Y. Chitour; F. Colonius; M. Sigalotti, Growth rates for persistently excited linear systems, Math. Control Signals Systems, 26, 589-616 (2014) · Zbl 1300.93133 · doi:10.1007/s00498-014-0131-0
[10] Y. Chitour, G. Mazanti and M. Sigalotti, Stabilization of persistently excited linear systems, in Hybrid Systems with Constraints (eds. J. Daafouz, S. Tarbouriech and M. Sigalotti), Wiley-ISTE, London, UK, 2013, chapter 4. · Zbl 1266.93127
[11] Y. Chitour; M. Sigalotti, On the stabilization of persistently excited linear systems, SIAM J. Control Optim., 48, 4032-4055 (2010) · Zbl 1202.93111 · doi:10.1137/080737812
[12] B. Cloez; M. Hairer, Exponential ergodicity for Markov processes with random switching, Bernoulli, 21, 505-536 (2015) · Zbl 1330.60094 · doi:10.3150/13-BEJ577
[13] O. L. V. Costa, M. D. Fragoso and M. G. Todorov, Continuous-Time Markov Jump Linear Systems, Probability and its Applications (New York), Springer, Heidelberg, 2013. · Zbl 1277.60003
[14] M. H. A. Davis, Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B, 46, 353-388 (1984) · Zbl 0565.60070
[15] M. H. A. Davis, Markov Models and Optimization, vol. 49 of Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1993. · Zbl 0780.60002
[16] A. Diwadkar; S. Dasgupta; U. Vaidya, Control of systems in Lure form over erasure channels, Internat. J. Robust Nonlinear Control, 25, 2787-2802 (2015) · Zbl 1328.93241 · doi:10.1002/rnc.3231
[17] A. Diwadkar; U. Vaidya, Stabilization of linear time varying systems over uncertain channels, Internat. J. Robust Nonlinear Control, 24, 1205-1220 (2014) · Zbl 1287.93050 · doi:10.1002/rnc.2935
[18] Y. Fang; K. A. Loparo, Stabilization of continuous-time jump linear systems, IEEE Trans. Automat. Control, 47, 1590-1603 (2002) · Zbl 1364.93632 · doi:10.1109/TAC.2002.803528
[19] X. Feng; K. A. Loparo; Y. Ji; H. J. Chizeck, Stochastic stability properties of jump linear systems, IEEE Trans. Automat. Control, 37, 38-53 (1992) · Zbl 0747.93079 · doi:10.1109/9.109637
[20] J. J. Green, Uniform Convergence to the Spectral Radius and Some Related Properties in Banach Algebras, PhD thesis, University of Sheffield, 1996.
[21] X. Guyon; S. Iovleff; J.-F. Yao, Linear diffusion with stationary switching regime, ESAIM Probab. Stat., 8, 25-35 (2004) · Zbl 1033.60084 · doi:10.1051/ps:2003017
[22] M. Hairer, Ergodic Properties of Markov Processes, Lecture notes from the University of Warwick, 2006.
[23] P. R. Halmos, Measure Theory, vol. 18 of Graduate Texts in Mathematics, Springer-Verlag, 1974. · Zbl 0283.28001
[24] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd edition, Cambridge University Press, Cambridge, 2013. · Zbl 1267.15001
[25] C. Li; M. Z. Q. Chen; J. Lam; X. Mao, On exponential almost sure stability of random jump systems, IEEE Trans. Automat. Control, 57, 3064-3077 (2012) · Zbl 1369.93698 · doi:10.1109/TAC.2012.2200369
[26] D. Liberzon, Switching in Systems and Control, 1st edition, Birkhäuser Boston, 2003. · Zbl 1036.93001
[27] H. Lin; P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54, 308-322 (2009) · Zbl 1367.93440 · doi:10.1109/TAC.2008.2012009
[28] M. Margaliot, Stability analysis of switched systems using variational principles: an introduction, Automatica, 42, 2059-2077 (2006) · Zbl 1104.93018 · doi:10.1016/j.automatica.2006.06.020
[29] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, 2nd edition, Cambridge University Press, Cambridge, 2009. · Zbl 1165.60001
[30] J. R. Norris, Markov Chains, vol. 2 of Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 1998, Reprint of 1997 original. · Zbl 0938.60058
[31] W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill Book Co., New York, New York, 1987. · Zbl 0925.00005
[32] R. Shorten; F. Wirth; O. Mason; K. Wulff; C. King, Stability criteria for switched and hybrid systems, SIAM Rev., 49, 545-592 (2007) · Zbl 1127.93005 · doi:10.1137/05063516X
[33] S. Srikant; M. R. Akella, Arbitrarily fast exponentially stabilizing controller for multi-input, persistently exciting singular control gain systems, Automatica J. IFAC, 54, 279-283 (2015) · Zbl 1318.93077 · doi:10.1016/j.automatica.2015.02.008
[34] Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, Communications and Control Engineering, Springer-Verlag, London, 2005. · Zbl 1075.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.