×

Image regularity and fidelity measure with a two-modality potential function. (English) Zbl 1426.94028

Summary: We define a strictly convex smooth potential function and use it to measure the data fidelity as well as the regularity for image denoising and cartoon-texture decomposition. The new model has several advantages over the well-known ROF or TV-\(L^2\) and the TV-\(L^1\) model. First, due to the two-modality property of the new potential function, the new regularity has strong regularizing properties in all directions and thus encourages removing noise in smooth areas, while, near edges, it smoothes the edge mainly along the tangent direction and thus can well preserve the edges. Second, the new potential function is very close to the \(L^1\) norm; thus using it to measure the data fidelity makes the new model perform very well in removing impulse noise and preserving the contrast. Lastly, the proposed fidelity and regularization term is strictly convex and smooth and thus allows a unique global minimizer and it can be solved by using the steepest descent method. Numerical experiments show that the proposed model outperforms TV-\(L^2\) and TV-\(L^1\) in removing impulse noise and mixed noise. It also outperforms some state-of-the-art methods specially designed for impulse noise. Tests on cartoon-texture decomposition show that our method is effective and performs better than TV-\(L^1\).

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65K10 Numerical optimization and variational techniques
68U10 Computing methodologies for image processing
Full Text: DOI

References:

[1] Gibson, J. D.; Bovik, A., Handbook of Image and Video Processing, (2000), Cambridge, Mass, USA: Academic Press, Cambridge, Mass, USA · Zbl 0967.68155
[2] Meyer, Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, (2002), Boston, Mass, USA: American Mathematical Society, Boston, Mass, USA
[3] Lefkimmiatis, S.; Roussos, A.; Unser, M.; Maragos, P., Convex generalizations of total variation based on the structure tensor with applications to inverse problems, Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM ’13) · doi:10.1007/978-3-642-38267-3_5
[4] Figueiredo, M. A. T.; Dias, J. B.; Oliveira, J. P.; Nowak, R. D., On total variation denoising: a new majorization-minimization algorithm and an experimental comparisonwith wavalet denoising, Proceedings of the IEEE International Conference on Image Processing (ICIP ’06) · doi:10.1109/ICIP.2006.313050
[5] Vogel, C. R.; Oman, M. E., Iterative methods for total variation denoising, SIAM Journal on Scientific Computing, 17, 1, 227-238, (1996) · Zbl 0847.65083 · doi:10.1137/0917016
[6] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60, 1-4, 259-268, (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[7] Chan, T. F.; Esedoglu, S., Aspects of total variation regularized \(L^1\) function approximation, SIAM Journal on Applied Mathematics, 65, 5, 1817-1837, (2005) · Zbl 1096.94004 · doi:10.1137/040604297
[8] Chan, T. F.; Esedoglu, S.; Nikolova, M., Algorithms for finding global minimizers of image segmentation and denoising models, SIAM Journal on Applied Mathematics, 66, 5, 1632-1648, (2006) · Zbl 1117.94002 · doi:10.1137/040615286
[9] Nikolova, M., A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20, 1-2, 99-120, (2004) · Zbl 1366.94065 · doi:10.1023/B:JMIV.0000011920.58935.9c
[10] Gong, Z.; Shen, Z.; Toh, K.-C., Image restoration with mixed or unknown noises, Multiscale Modeling and Simulation, 12, 2, 458-487, (2014) · Zbl 1380.94021 · doi:10.1137/130904533
[11] Huber, P. J., Robust estimation of a location parameter, Annals of Mathematical Statistics, 35, 1, 73-101, (1964) · Zbl 0136.39805 · doi:10.1214/aoms/1177703732
[12] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40, 1, 120-145, (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[13] Hong, B.; Koo, J.; Burger, M.; Soatto, S., Adaptive regularization of some inverse problems in image analysis
[14] Hwang, H.; Haddad, R. A., Adaptive median filters: new algorithms and results, IEEE Transactions on Image Processing, 4, 4, 499-502, (1995) · doi:10.1109/83.370679
[15] Ko, S.-J.; Lee, Y. H., Center weighted median filters and their applications to image enhancement, IEEE Transactions on Circuits and Systems II: Express Briefs, 38, 9, 984-993, (1991) · doi:10.1109/31.83870
[16] Haddad, A.; Meyer, Y., Variational methods in image processing, Contemporary Mathematics, 446, (2007) · Zbl 1200.94014 · doi:10.1090/conm/446/08636
[17] Vese, L. A.; Osher, S. J., Modeling textures with total variation minimization and oscillating patterns in image processing, Journal of Scientific Computing, 19, 1-3, 553-572, (2003) · Zbl 1034.49039 · doi:10.1023/A:1025384832106
[18] Osher, S.; Solé, A.; Vese, L., Image decomposition and restoration using total variation minimization and the \(H^1\), Multiscale Modeling & Simulation, 1, 3, 349-370, (2003) · Zbl 1051.49026 · doi:10.1137/S1540345902416247
[19] Lieu, L. H.; Vese, L. A., Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces, Applied Mathematics & Optimization, 58, 2, 167-193, (2008) · Zbl 1191.68789 · doi:10.1007/s00245-008-9047-8
[20] Le, T. M.; Vese, L. A., Image decomposition using total variation and div(BMO), Journal of Multiscale Modeling and Simulation, 4, 2, 390-423, (2005) · Zbl 1093.94006 · doi:10.1137/040610052
[21] Yin, W.; Goldfarb, D.; Osher, S., Image cartoon-texture decomposition and feature selection using the total variation regularized \(\mathcal{l}_1\) functional, Variational, Geometric, and Level Set Methods in Computer Vision. Variational, Geometric, and Level Set Methods in Computer Vision, Lecture Notes in Computer Science, 3752, 73-84, (2005), Berlin, Germany: Springer, Berlin, Germany · Zbl 1159.68610 · doi:10.1007/11567646_7
[22] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 13, 4, 600-612, (2004) · doi:10.1109/TIP.2003.819861
[23] Chan, R. H.; Hu, C.; Nikolova, M., An iterative procedure for removing random-valued impulse noise, IEEE Signal Processing Letters, 11, 12, 921-924, (2004) · doi:10.1109/LSP.2004.838190
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.