×

On the measure of the cut locus of a Fréchet mean. (English) Zbl 1330.60023

Let \(\mu\) be a finite measure on a complete and connected Riemannian manifold \(M\). For \(p\geq 1\), the \(p\)-energy function \(F_{\mu, p}\) of \(\mu\) is defined by \[ F_{\mu ,p}(x) = \frac{1}{p}\int_Md(x,y)^p\, d\mu (y),\quad x\in M. \] Assume that \(F_{\mu ,p}\) achieves a local minimum at \(x_0\). If \(p=2\) (and \(\mu\) is a probability measure), the point \(x_0\) is the Fréchet mean of \(\mu\). Assume further that, for any \(x\) in the cut locus \(C(x_0)\) of \(x_0\), there are at least two minimal geodesics from \(x_0\) to \(x\). The authors then show that \(\mu (C(x_0))=0\) (in the case \(p=1\), the further assumption \(\mu(\{x_0\})=0\) is added).
The theorem generalizes a result of T. Hotz and S. Huckemann [Ann. Inst. Stat. Math. 67, No. 1, 177–193 (2015; Zbl 1331.62269)] which treated the case of the circle \(M\) and \(p=2\). The property \(\mu (C(x_0))=0\) is an essential condition in the Central Limit Theorem for empirical Fréchet means obtained in [W. S. Kendall and H. Le, Braz. J. Probab. Stat. 25, No. 3, 323–352 (2011; Zbl 1234.60025)].

MSC:

60D05 Geometric probability and stochastic geometry
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C22 Geodesics in global differential geometry
60F05 Central limit and other weak theorems
Full Text: DOI

References:

[1] B.Afsari, ‘Riemannian \(L^p\) center of mass: existence, uniqueness, and convexity’, Proc. Amer. Math. Soc., 139 (2011) 655-673. · Zbl 1220.53040
[2] B.Afsari, R.Tron, R.Vidal, ‘On the convergence of gradient descent for finding the Riemannian center of mass’, SIAM J. Control Optim., 51 (2013) 2230-2260. · Zbl 1285.90031
[3] M.Arnaudon, C.Dombry, A.Phan, L.Yang, ‘Stochastic algorithms for computing means of probability measures’, Stochastic Process. Appl., 122 (2012) 1437-1455. · Zbl 1262.60073
[4] D.Barden, H.Le, ‘Some consequences of the nature of the distance function on the cut locus in a Riemannian manifold’, J. London Math. Soc., 56 (1997) 369-383. · Zbl 0892.53021
[5] R. L.Bishop, ‘Decomposition of cut loci’, Proc. Amer. Math. Soc., 65 (1977) 133-136. · Zbl 0373.53019
[6] D.Burago, Y.Burago, S.Ivanov, A course in metric geometry (American Mathematical Society, Providence, RI, 2001). · Zbl 0981.51016
[7] Y.Burago, M.Gromov, G.Perelman, ‘A.D. Alexandrov spaces with curvature bounded below’, Russian Math. Surveys, 47 (1992) 1-58. · Zbl 0802.53018
[8] B.Charlier, ‘Necessary and sufficient condition for existence of a Fréchet mean on the circle’, Preprint, 2011, arXiv:1109.1986v2.
[9] T.Hotz, S.Huckemann, ‘Intrinsic means on the circle: uniqueness, locus and asymptotics’, Preprint, 2011, arXiv:1108.2141v1. · Zbl 1331.62269
[10] H.Karcher, ‘Riemannian center of mass and mollifier smoothing’, Comm. Pure Appl. Math., 30 (1977) 509-541. · Zbl 0354.57005
[11] D. G.Kendall, D.Barden, T. K.Carne, H.Le, Shape and shape theory (Wiley, New York, 1999). · Zbl 0940.60006
[12] W. S.Kendall, ‘Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence’, Proc. London Math. Soc., 61 (1990) 371-406. · Zbl 0675.58042
[13] W. S.Kendall, H.Le, ‘Limit theorems for empirical Fréchet means of independent and non‐identically distributed manifold‐valued random variables’, Braz. J. Probab. Stat., 25 (2011) 323-352. · Zbl 1234.60025
[14] S.Kobayashi, K.Nomizu, Foundations of differential geometry, II (Wiley‐Interscience, New York, 1969). · Zbl 0175.48504
[15] H.Le, ‘Estimation of Riemannian barycentres’, LMS J. Comput. Math., 7 (2004) 193-200. · Zbl 1054.60011
[16] H.Le, D.Barden, ‘Itô correction terms for the radial parts of semimartingales on manifolds’, Probab. Theory Related Fields, 101 (1995) 133-146. · Zbl 0822.58055
[17] C. M.Margerin, ‘General conjugate loci are not closed’, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Proceedings of Symposia in Pure Mathematics 54, Part 3 (eds R.Greene (ed.), S. T.Yau (ed.); American Mathematical Society, Providence, RI, 1993) 465-478. · Zbl 0811.53043
[18] S.Ohta, ‘Barycenters in Alexandrov spaces of curvature bounded below’, Adv. Geom., 14 (2012) 571-587. · Zbl 1276.53073
[19] X.Pennec, ‘Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements’, J. Math. Imaging Vision, 25 (2006) 127-154. · Zbl 1478.94072
[20] F. W.Warner, ‘The conjugate locus of a Riemannian manifold’, Amer. J. Math., 87 (1965) 575-604. · Zbl 0129.36002
[21] A. D.Weinstein, ‘The cut locus and conjugate locus of a Riemannian manifold’, Ann. of Math., 87 (1968) 29-41. · Zbl 0159.23902
[22] L.Yang, ‘Riemannian median and its estimation’, LMS J. Comput. Math., 13 (2010) 461-479. · Zbl 1226.60018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.