×

Numerical algorithms for spline interpolation on space of probability density functions. (English) Zbl 1524.49032

Summary: This paper addresses the problem of spline interpolations on \(\mathcal{P}\), the space of probability density functions when only a few observations \(p_i\in\mathcal{P}\) are available. Given a finite set of \(n+1\) distinct time instants \(t_i\) and corresponding data points \(p_i\in\mathcal{P}\), we consider the general problem of estimating a spline as a special regularized function \(\gamma\) on \(\mathcal{P}\) with \(\gamma(t_i) = p_i\). In particular, we focus on estimating missing data using smooth temporal splines to overcome the discrete nature of observations. In addition to generalizing splines on \(\mathcal{P}\) with minimal squared-norm of the acceleration, we give numerical schemes for solving \(C^1\) and \(C^2\) splines from data points \(p_i\in\mathcal{P}\). The two solutions are then shown to be computationally efficient, geometrically simpler, extensible, and can be transposed to other spaces and applications.

MSC:

49K15 Optimality conditions for problems involving ordinary differential equations
65D10 Numerical smoothing, curve fitting
49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
41A15 Spline approximation
Full Text: DOI

References:

[1] Ay, N.; Jost, J.; Le, H.; Schwachhöfer, L., Information geometry (2017), Cham: Springer, Cham · Zbl 1383.53002 · doi:10.1007/978-3-319-56478-4
[2] Bardsley, J.; Cui, T.; Marzouk, Y.; Wang, Z., Scalable optimization-based sampling on function space, SIAM J Sci Comput, 42, 2, A1317-A1347 (2020) · Zbl 1471.62023 · doi:10.1137/19M1245220
[3] Bogfjellmo, G.; Modin, K.; Verdier, O., Numerical algorithm for \(c^2\)-splines on symmetric spaces, SIAM J Numer Anal, 56, 4, 2623-2647 (2018) · Zbl 1401.41009 · doi:10.1137/17M1123353
[4] Celledoni, E.; Eidnes, S.; Owren, B.; Ringholm, T., Dissipative numerical schemes on riemannian manifolds with applications to gradient flows, SIAM J Sci Comput, 40, 6, A3789-A3806 (2018) · Zbl 1403.49029 · doi:10.1137/18M1190628
[5] Cencov N (1982) Statistical decision rules and optimal inference. Translations of Mathematical Monographs, 53 · Zbl 0484.62008
[6] Crouch, P.; Kun, G.; Silva Leite, F., The de Casteljau algorithm on lie groups and spheres, J Dyn Control Syst, 5, 397-429 (1999) · Zbl 0961.53027 · doi:10.1023/A:1021770717822
[7] de Casteljau, P., Outillages méthodes de calcul (1959), André Citroën Automobiles, Paris: Technical Report, André Citroën Automobiles, Paris
[8] Friedrich, T., Die fisher-information und symplektische strukturen, Math Nachr, 153, 273-296 (1991) · Zbl 0792.62003 · doi:10.1002/mana.19911530125
[9] Kahl, K.; Rottmann, M., Least angle regression coarsening in bootstrap algebraic multigrid, SIAM J Sci Comput, 40, 6, A3928-A3954 (2018) · Zbl 1403.62135 · doi:10.1137/18M1168182
[10] Kwang-Rae K, Ian L, Huiling L, Severn K (2020) Smoothing splines on Riemannian manifolds with applications to 3d shape space. CoRR, abs/1801.04978 · Zbl 07555258
[11] Lancaster, P.; Lancaster, D.; Šalkauskas, K., Curve and surface fitting: an introduction (1986), Computational mathematics and applications: Academic Press, Computational mathematics and applications · Zbl 0649.65012
[12] Lin, L.; StThomas, B.; Zhu, H.; Dunson, D., Extrinsic local regression on manifold-valued data, J Am Stat Assoc, 112, 519, 1261-1273 (2017) · doi:10.1080/01621459.2016.1208615
[13] Machado, L.; Silva Leite, F., Fitting smooth paths on Riemannian manifolds, Int J Appl Math Stat, 06, 4, 25-53 (2006) · Zbl 1138.65012
[14] Petersen, A.; Müller, H., Fréchet regression for random objects with Euclidean predictors, Ann Stat, 47, 2, 691-719 (2019) · Zbl 1417.62091 · doi:10.1214/17-AOS1624
[15] Popiel, T.; Noakes, L., \(c^2\) spherical Bézier splines, Comput Aided Geom Des, 23, 261-275 (2006) · Zbl 1094.65014 · doi:10.1016/j.cagd.2005.11.003
[16] Popiel, T.; Noakes, L., Bézier curves and c2 interpolation in riemannian manifolds, J Approx Theory, 148, 2, 111-127 (2007) · Zbl 1129.53011 · doi:10.1016/j.jat.2007.03.002
[17] Rao, C., Information and accuracy attainable in the estimation of statistical parameters, Bull Calcutta Math Soc, 37, 81-89 (1945) · Zbl 0063.06420
[18] Sabine, L.; Michael, W., Iterative solution of saddle-point systems from radial basis function (rbf) interpolation, SIAM J Sci Comput, 41, 3, A1706-A1732 (2019) · Zbl 1420.65023 · doi:10.1137/18M119063X
[19] Samir, C.; Absil, P-A; Srivastava, A.; Klassen, E., A gradient-descent method for curve fitting on Riemannian manifolds, Found Comput Math, 12, 49-73 (2012) · Zbl 1245.65017 · doi:10.1007/s10208-011-9091-7
[20] Shingel, T., Interpolation in special orthogonal groups, IMA J Numer Anal, 29, 3, 731-745 (2009) · Zbl 1175.65023 · doi:10.1093/imanum/drn033
[21] Srivastava A, Klassen E (2016) Functional and shape data analysis. Springer Series in Statistics · Zbl 1376.62003
[22] Wallner, J.; Nava Yazdani, E.; Grohs, P., Smoothness properties of lie group subdivision schemes, Multiscale Model Simul, 6, 2, 493-505 (2007) · Zbl 1144.41003 · doi:10.1137/060668353
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.