×

Non-crossing monotone paths and binary trees in edge-ordered complete geometric graphs. (English) Zbl 1513.05127

Summary: An edge-ordered graph is a graph with a total ordering of its edges. A path \(P = v_1v_2 \dots v_k\) in an edge-ordered graph is called increasing if \((v_iv_{i+1}) < (v_{i+1}v_{i+2})\) for all \(i = 1, \dots, k - 2\); and it is called decreasing if \((v_iv_{i+1}) > (v_{i+1}v_{i+2})\) for all \(i = 1, \dots, k -2\). We say that \(P\) is monotone if it is increasing or decreasing. A rooted tree \(T\) in an edge-ordered graph is called monotone if either every path from the root to a leaf is increasing or every path from the root to a leaf is decreasing.
Let \(G\) be a graph. In a straight-line drawing \(D\) of \(G\), its vertices are drawn as different points in the plane and its edges are straight line segments. Let \(\bar{\alpha}(G)\) be the largest integer such that every edge-ordered straight-line drawing of \(G\) contains a monotone non-crossing path of length \(\bar{\alpha}(G)\). Let \(\bar{\tau}(G)\) be the largest integer such that every edge-ordered straight-line drawing of \(G\) contains a monotone non-crossing complete binary tree of \(\bar{\tau}(G)\) edges. In this paper we show that \(\bar{\alpha}(K_n) = \Omega(\log\log n), \bar{\alpha}(K_n) = O(\log n), \bar{\tau}(K_n) = \Omega(\log \log \log n)\) and \(\bar{\tau}(K_n)=O(\sqrt{n\log n})\).

MSC:

05C10 Planar graphs; geometric and topological aspects of graph theory
05C05 Trees
05C38 Paths and cycles

References:

[1] Aichholzer, O.; Cabello, S.; Fabila-Monroy, R.; Flores-Peñaloza, D.; Hackl, T.; Huemer, C.; Hurtado, F.; Wood, DR, Edge-removal and non-crossing configurations in geometric graphs, Discrete Math. Theor. Comput. Sci., 12, 75-86 (2010) · Zbl 1250.05060
[2] Barba, L.; Fabila-Monroy, R.; Lara, D.; Leaños, J.; Rodríguez, C.; Salazar, G.; Zaragoza, F., The Erdős-Sós conjecture for geometric graphs, Discrete Math. Theor. Comput. Sci., 15, 93-100 (2013) · Zbl 1283.05070
[3] Bialostocki, A.; Roditty, Y., A monotone path in an edge-ordered graph, Internat. J. Math. Math. Sci., 10, 315-320 (1987) · Zbl 0633.05043 · doi:10.1155/S0161171287000383
[4] P. Brass, G. Károlyi, and P. Valtr, A Turán-type extremal theory of convex geometric graphs, in: Discrete and Computational Geometry, Algorithms Combin., vol 25. Springer (Berlin, 2003), pp. 275-300 · Zbl 1074.05048
[5] M. Bucic, M. Kwan, A. Pokrovskiy, B. Sudakov, T. Tran, and A. Z. Wagner, Nearly-linear monotone paths in edge-ordered graphs, manuscript, 2018
[6] Calderbank, AR; Chung, FRK; Sturtevant, DG, Increasing sequences with nonzero block sums and increasing paths in edge-ordered graphs, Discrete Math., 50, 15-28 (1984) · Zbl 0542.05058 · doi:10.1016/0012-365X(84)90031-1
[7] Chvátal, V.; Komlós, J., Some combinatorial theorems on monotonicity, Canad. Math. Bull., 14, 151-157 (1971) · Zbl 0214.23503 · doi:10.4153/CMB-1971-028-8
[8] Conlon, D.; Fox, J.; Sudakov, B., Hypergraph Ramsey numbers, J. Amer. Math. Soc., 23, 247-266 (2010) · Zbl 1287.05087 · doi:10.1090/S0894-0347-09-00645-6
[9] P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. (3), 2 (1952), 417-439 · Zbl 0048.28203
[10] Erdős, P.; Szekeres, G., A combinatorial problem in geometry, Compositio Math., 2, 463-470 (1935) · JFM 61.0651.04
[11] R. L. Graham and D. J. Kleitman, Increasing paths in edge ordered graphs, Period. Math. Hungar., 3 (1973), 141-148 (collection of articles dedicated to the memory of Alfréd Rényi, II) · Zbl 0243.05116
[12] Gyárfás, A., Ramsey and Turán-type problems for non-crossing subgraphs of bipartite geometric graphs, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 54, 47-56 (2011)
[13] Károlyi, G., Pach, J., Tóth, G., Ramsey-type results for geometric graphs. I, ACM Symposium on Computational Geometry, ACM Symposium on Computational Geometry (Philadelphia, PA, : Discrete Comput. Geom. 18(1997), 247-255 (1996) · Zbl 0940.05046
[14] Gy. Károlyi, J. Pach, G. Tóth, and P. Valtr, Ramsey-type results for geometric graphs. II, ACM Symposium on Computational Geometry (Nice, : Discrete Comput. Geom. 20(1998), 375-388 (1997) · Zbl 0912.05046
[15] Lavrov, M.; Loh, P., Increasing hamiltonian paths in random edge orderings, Random Structures Algorithms, 48, 588-611 (2016) · Zbl 1338.05150 · doi:10.1002/rsa.20592
[16] A. Martinsson, Most edge-orderings of \({K}_n\) have maximal altitude, manuscript, 2016 · Zbl 1414.05268
[17] Milans, KG, Monotone paths in dense edge-ordered graphs, J. Comb., 8, 423-437 (2017) · Zbl 1370.05111
[18] Mynhardt, CM; Burger, AP; Clark, TC; Falvai, B.; Henderson, NDR, Altitude of regular graphs with girth at least five, Discrete Math., 294, 241-257 (2005) · Zbl 1062.05131 · doi:10.1016/j.disc.2005.02.007
[19] Roditty, Y.; Shoham, B.; Yuster, R., Monotone paths in edge-ordered sparse graphs, Discrete Math., 226, 411-417 (2001) · Zbl 0961.05040 · doi:10.1016/S0012-365X(00)00174-6
[20] J. De Silva, T. Molla, F. Pfender, T. Retter, and M. Tait, Increasing paths in edge-ordered graphs: the hypercube and random graphs, manuscript, 2015 · Zbl 1335.05150
[21] Yuster, R., Large monotone paths in graphs with bounded degree, Graphs Combin., 17, 579-587 (2001) · Zbl 1010.05044 · doi:10.1007/s003730170031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.