×

Development and verification of a flexible tethered satellite system model considering the fuel slosh. (English) Zbl 1505.70054

Summary: Removing space debris of various sizes, configurations, and properties from Earth’s orbits is one of the main missions of world space agencies. The existence of deactivated bodies within the path of other spacecraft increases the risk of collision. Althgough towing a satellite through a tether and taking it out of orbit may be a definite solution for space debris removal, most deactivated satellites have some fuel remaining in their fuel tank. This remaining liquid slosh within the tank directly affects satellite motion. To improve the mathematical modeling, the existence of unburned fuel is considered. More specifically, this research focuses on dynamic modeling and control of a selected type of satellite by taking into account the sloshing effect of debris captured using a tug and a tether. In this work, we consider the postcapture phase and consider the combined set of debris as a tethered satellite system (TSS). In this regard, we use both the classic and modified forms of the Lagrange method to derive the governing equation, which entails the calculation of the total kinetic and potential energies of the system. This system is modeled using two completely different simulation methods to create confidence and ensure the performance of our modeling: the MATLAB simulator and NX Siemens software, which is a type of CAD software. The final results of these two programs show an acceptable correlation. Finally, to reveal the effects of different parameters on the system variables, we perform a parametric study.

MSC:

70M20 Orbital mechanics
70E55 Dynamics of multibody systems
70-08 Computational methods for problems pertaining to mechanics of particles and systems

Software:

NX; Matlab
Full Text: DOI

References:

[1] Klinkrad, H., Space Debris (2006), Berlin: Springer, Berlin
[2] Huang, P.; Hu, Z.; Zhang, F., Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system, Multibody Syst. Dyn., 36, 115-141 (2016) · doi:10.1007/s11044-015-9478-3
[3] Yao, Q., Adaptive trajectory tracking control of a free-flying space robot subject to input nonlinearities, J. Braz. Soc. Mech. Sci. Eng., 42, 574 (2020) · doi:10.1007/s40430-020-02652-4
[4] Pelton, J. N., New Solutions for the Space Debris Problem (2015), Cham: Springer, Cham · doi:10.1007/978-3-319-17151-7
[5] Palmerini, G. B.; Sabatini, M.; Gasbarri, P., Guidelines for active removal of non-functional targets designed to assist rendezvous and capture, 2016 IEEE Aerospace Conference, 1-13 (2016), Big Sky: IEEE, Big Sky
[6] He, W.; Ge, S. S., Dynamic modeling and vibration control of a flexible satellite, IEEE Trans. Aerosp. Electron. Syst., 51, 1422-1431 (2015) · doi:10.1109/TAES.2014.130804
[7] Azadi, M.; Eghtesad, M.; Fazelzadeh, S. A.; Azadi, E., Dynamics and control of a smart flexible satellite moving in an orbit, Multibody Syst. Dyn., 35, 1-23 (2015) · Zbl 1335.70027 · doi:10.1007/s11044-014-9447-2
[8] Aslanov, V. S., Dynamics of a satellite with flexible appendages in the Coulomb interaction, J. Guid. Control Dyn., 41, 565-572 (2018) · doi:10.2514/1.G002832
[9] Souza, A. G.; Souza, L. C.G., Design of a controller for a rigid-flexible satellite using the H-infinity method considering the parametric uncertainty, Mech. Syst. Signal Process., 116, 641-650 (2019) · doi:10.1016/j.ymssp.2018.07.002
[10] Ji, N.; Liu, J., Vibration control for a flexible satellite with adaptive actuator fault-tolerant and input quantization, Trans. Inst. Meas. Control, 42, 451-460 (2020) · doi:10.1177/0142331219874228
[11] Kim, D. H.; Choi, J. W., Attitude controller design for a launch vehicle with fuel-slosh, SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No. 00TH8545), 235-240 (2000)
[12] Luskin, H.; Lapin, E., An analytical approach to the fuel sloshing and buffeting problems of aircraft, J. Aeronaut. Sci., 19, 217-228 (1952) · doi:10.2514/8.2234
[13] Colagrossi, A.; Lavagna, M., Integrated vibration suppression attitude control for flexible spacecrafts with internal liquid sloshing, Multibody Syst. Dyn., 51, 123-157 (2021) · Zbl 1466.70042 · doi:10.1007/s11044-020-09755-9
[14] Reyhanoglu, M.; Rubio Hervas, J., Nonlinear dynamics and control of space vehicles with multiple fuel slosh modes, Control Eng. Pract., 20, 912-918 (2012) · Zbl 1264.93078 · doi:10.1016/j.conengprac.2012.05.011
[15] Fedi Casas, M.: Dynamics and control of tethered satellite formations in low-Earth orbits. PhD Thesis (2015)
[16] Aslanov, V. S.; Ledkov, A. S., Dynamics of Tethered Satellite Systems (2012), Burlington: Elsevier, Burlington · doi:10.1533/9780857096005
[17] Johnson, E. N.; Mooney, J. G., A comparison of automatic nap-of-the-Earth guidance strategies for helicopters, J. Field Robot., 31, 637-653 (2014) · doi:10.1002/rob.21514
[18] Luo, C.; Wen, H.; Jin, D., Deployment of flexible space tether system with satellite attitude stabilization, Acta Astronaut., 160, 240-250 (2019) · doi:10.1016/j.actaastro.2019.04.036
[19] Sun, Q.; Liu, Y.; Qi, N.; Yang, Y.; Chen, Z., Dynamics of motorized momentum exchange tether for payloads capture, Adv. Space Res., 59, 2374-2388 (2017) · doi:10.1016/j.asr.2017.02.013
[20] Diakov, P. A.; Malashin, A. A.; Smirnov, N. N., Dynamic processes in the tether of a space tethered system, Acta Astronaut., 163, 100-106 (2019) · doi:10.1016/j.actaastro.2019.01.019
[21] Sánchez-Arriaga, G.; Naghdi, S.; Wätzig, K.; Schilm, J.; Lorenzini, E. C.; Tajmar, M.; Urgoiti, E.; Castellani, L. T.; Plaza, J. F.; Post, A., The E.T.PACK project: towards a fully passive and consumable-less deorbit kit based on low-work-function tether technology, Acta Astronaut., 177, 821-827 (2020) · doi:10.1016/j.actaastro.2020.03.036
[22] Aslanov, V. S.; Yudintsev, V. V., Dynamics of large debris connected to space tug by a tether, J. Guid. Control Dyn., 36, 1654-1660 (2013) · doi:10.2514/1.60976
[23] Yousefian, P.; Salarieh, H., Anti-sway control of tethered satellite systems using attitude control of the main satellite, Acta Astronaut., 111, 300-307 (2015) · doi:10.1016/j.actaastro.2015.02.027
[24] Liu, Y.; Zhou, J., Attitude dynamics and thrust control for short tethered sub-satellite in deployment, Proc. Inst. Mech. Eng., G J. Aerosp. Eng., 229, 1407-1422 (2015) · doi:10.1177/0954410014550678
[25] Pang, Z.; Jin, D., Experimental verification of chaotic control of an underactuated tethered satellite system, Acta Astronaut., 120, 287-294 (2016) · doi:10.1016/j.actaastro.2015.12.016
[26] Darabi, A.; Assadian, N., Coupled rotational and translational modeling of two satellites connected by a tether and their robust attitude control using optimal offset approach, Adv. Space Res., 63, 2455-2468 (2019) · doi:10.1016/j.asr.2019.01.003
[27] Aslanov, V. S.; Yudintsev, V. V., Dynamics, analytical solutions and choice of parameters for towed space debris with flexible appendages, Adv. Space Res., 55, 660-667 (2015) · doi:10.1016/j.asr.2014.10.034
[28] Aslanov, V. S.; Yudintsev, V. V., Behavior of tethered debris with flexible appendages, Acta Astronaut., 104, 91-98 (2014) · doi:10.1016/j.actaastro.2014.07.028
[29] Qi, R.; Zhang, Y.; Lu, S.; Hu, Q.; Zhong, R., Tethered towing of defunct satellites with solar panels, Acta Astronaut., 175, 1-10 (2020) · doi:10.1016/j.actaastro.2020.05.028
[30] Meirovitch, L., Methods of Analytical Dynamics (2010), North Chelmsford: Courier Corporation, North Chelmsford · Zbl 1115.70002
[31] Thomson, W. T., Theory of Vibration with Applications (1966)
[32] Wittenburg, J., Dynamics of Systems of Rigid Bodies (1977), Wiesbaden: Vieweg+Teubner Verlag, Wiesbaden · Zbl 0363.70004 · doi:10.1007/978-3-322-90942-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.