×

Effects of horizontal pressure gradients on bed destabilization under waves. (English) Zbl 1383.76091

Summary: We report on new experiments designed to investigate bed destabilization processes in a two-dimensional wave flume physical model of a beach. The mobile bed consists of non-cohesive granular material of low density. The wave conditions are provided by repeating a cycle of waves made of two bichromatic groups of different period. The horizontal and vertical velocities are acoustically profiled vertically from free-stream elevation down to the still bed level in the surf zone. Additional measurements of the fluid pressure at positions closely aligned horizontally and vertically in and slightly above the sediment bed are undertaken. Mobile bed interfaces, still bed and top interface, are detected via acoustic and optical methods. Both methods are cross-compared and give similar results. Flow turbulence over the bed is analysed, the Reynolds turbulent shear stress is found negligible compared to the orbital flow induced momentum diffusion. The shear stress and the horizontal pressure gradient are computed at near-bed elevation and used in the bed incipient plug flow model of J. F. A Sleath [“Conditions for plug formation in oscillatory flow”, Cont. Shelf Res. 19, No. 13, 1643–1664 (1999; doi:10.1016/s0278-4343(98)00096-x)]. Both the model and the measurements confirm that destabilization occurs when the non-dimensional pressure gradient (or Sleath number) exceeds the threshold value of 0.3 which is simultaneous with strong flow acceleration. The near-bottom fluid shear stress detected during these flow accelerations at steep wave fronts is found experimentally to be negative, which is retrieved with an unsteady plug flow model. This is suggesting that the fluid above the bed resists the sediment layer motion at these particular phases.

MSC:

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76T20 Suspensions
Full Text: DOI

References:

[1] van der A, D. A., O’Donoghue, T., Davies, A. G. & Ribberink, J. S.2011Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow. J. Fluid Mech.684, 251-283.10.1017/jfm.2011.300S0022112011003004 · Zbl 1241.76059 · doi:10.1017/jfm.2011.300
[2] Abreu, T., Michallet, H., Silva, P. A., Sancho, F., van der A, D. A. & Ruessink, B. G.2013Bed shear stress under skewed and asymmetric oscillatory flows. Coast. Engng73 (7), 1-10.10.1016/j.coastaleng.2012.10.001 · doi:10.1016/j.coastaleng.2012.10.001
[3] Aussillous, P., Chauchat, J., Pailha, M., Médale, M. & Guazzelli, E.2013Investigation of the mobile granular layer in bedload transport by laminar shearing flows. J. Fluid Mech.736, 594-615.10.1017/jfm.2013.546S0022112013005466 · Zbl 1294.76263 · doi:10.1017/jfm.2013.546
[4] Bagnold, R. A.1956The flow of cohesionless grains in fluids. Phil. Trans. R. Soc. Lond. A249, 235-297.10.1098/rsta.1956.0020 · Zbl 0072.20201 · doi:10.1098/rsta.1956.0020
[5] Bailard, J. A.1981An energetics total load sediment transport model for a plane sloping beach. J. Geophys. Res.86 (C11), 10938-10954.10.1029/JC086iC11p10938 · doi:10.1029/JC086iC11p10938
[6] Berni, C., Barthélemy, E. & Michallet, H.2013Surf zone cross-shore boundary layer velocity asymmetry and skewness: an experimental study on a mobile bed. J. Geophys. Res. Oceans118, 2188-2200.10.1002/jgrc.20125 · doi:10.1002/jgrc.20125
[7] Berni, C., Michallet, H. & Barthélemy, E.2012Measurements of surf zone sand bed dynamics under irregular waves. Eur. J. Environ. Civil Engng16 (8), 981-994.10.1080/19648189.2012.705957 · doi:10.1080/19648189.2012.705957
[8] Berni, C., Mignot, E., Michallet, H., Dalla-Costa, C., Grasso, F. & Lagauzère, M.2009Diversity of bed evolution at wave and tidal scales on truc-vert beach. J. Coast. Res.SI 56, 1726-1730.
[9] Boyer, F., Guazzelli, E. & Pouliquen, O.2011Unifying suspension and granular rheology. Phys. Rev. Lett.107 (18), 188301.10.1103/PhysRevLett.107.188301 · Zbl 1241.76008 · doi:10.1103/PhysRevLett.107.188301
[10] Bricault, M.2006 Rétrodiffusion acoustique par une suspension en milieu turbulent: application à la mesure de profils de concentration pour l’étude de processus hydrosédimentaires. PhD thesis, INP Grenoble.
[11] Chen, D., Chen, C., Tang, F. E., Stansby, P. & Li, M.2007Boundary layer structure of oscillatory open-channel shallow flows over smooth and rough beds. Exp. Fluids42 (5), 719-736.10.1007/s00348-007-0280-8 · doi:10.1007/s00348-007-0280-8
[12] Conley, D. C. & Inman, D. L.1992Field observations of the fluid-granular boundary layer under near-breaking waves. J. Geophys. Res.97 (C6), 9631-9643.10.1029/92JC00227 · doi:10.1029/92JC00227
[13] Cowen, E. A., Dudley, R. D., Liao, Q., Variano, E. A. & Liu, P. L.-F.2010An in situ borescopic quantitative imaging profiler for the measurement of high concentration sediment velocity. Exp. Fluids49 (1), 77-88.10.1007/s00348-009-0801-8 · doi:10.1007/s00348-009-0801-8
[14] Dick, J. E. & Sleath, J. F. A.1991Velocities and concentrations in oscillatory flow over beds of sediment. J. Fluid Mech.233, 165-196.10.1017/S0022112091000447S0022112091000447 · doi:10.1017/S0022112091000447
[15] Elgar, S., Gallagher, E. L. & Guza, R. T.2001Nearshore sandbar migration. J. Geophys. Res.106 (C6), 11623-11627.10.1029/2000JC000389 · doi:10.1029/2000JC000389
[16] Foster, D. L., Bowen, A. J., Holman, R. A. & Natoo, P.2006Field evidence of pressure gradient induced incipient motion. J. Geophys. Res.111 (C05004).
[17] Frank, D., Foster, D., Sou, I. M., Calantoni, J. & Chou, P.2015Lagrangian measurements of incipient motion in oscillatory flows. J. Geophys. Res. Oceans120, 244-256.10.1002/2014JC010183 · doi:10.1002/2014JC010183
[18] Grasso, F., Michallet, H. & Barthélemy, E.2011aExperimental simulation of shoreface nourishments under storm events: A morphological, hydrodynamic, and sediment grain size analysis. Coast. Engng58, 184-193.10.1016/j.coastaleng.2010.09.007 · doi:10.1016/j.coastaleng.2010.09.007
[19] Grasso, F., Michallet, H. & Barthélemy, E.2011bSediment transport associated with morphological beach changes forced by irregular asymmetric, skewed waves. J. Geophys. Res.116, C03020.10.1029/2010JC006550 · Zbl 1258.76016 · doi:10.1029/2010JC006550
[20] Grasso, F., Michallet, H., Barthélemy, E. & Certain, R.2009Physical modeling of intermediate cross-shore beach morphology: transients and equilibrium states. J. Geophys. Res.114, C09001.10.1029/2009JC005308 · doi:10.1029/2009JC005308
[21] Hay, A. E., Zedel, L., Cheel, R. & Dillon, J.2012aObservations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness beds using a prototype wideband coherent doppler profiler. Part I. The oscillatory component of the flow. J. Geophys. Res.117, C03005.
[22] Hay, A. E., Zedel, L., Cheel, R. & Dillon, J.2012bObservations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness using a prototype wideband coherent doppler profiler. Part II. Turbulence and stress. J. Geophys. Res.117, C03006.
[23] Henriquez, M., Reniers, A. J. H. M., Ruessink, B. G. & Stive, M. J. F.2014PIV measurements of the bottom boundary layer under nonlinear surface waves. Coast. Engng94, 33-46.10.1016/j.coastaleng.2014.08.004 · doi:10.1016/j.coastaleng.2014.08.004
[24] Hurther, D.2001, 3-D acoustic doppler velocimetry and turbulence in open-channel flow. PhD thesis, École Polytechnique Fédérale de Lausanne.
[25] Hurther, D. & Thorne, P. D.2011Suspension and near-bed load sediment transport processes above a migrating, sand-rippled bed under shoaling waves. J. Geophys. Res.116, C07001.10.1029/2010JC006774 · doi:10.1029/2010JC006774
[26] Hussain, A. K. M. F. & Reynolds, W. C.1970The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech.41 (02), 241-258.10.1017/S0022112070000605S0022112070000605 · doi:10.1017/S0022112070000605
[27] Jensen, B. J., Sumer, B. M. & Fredsøe, J.1989Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech.206, 265-297.10.1017/S0022112089002302S0022112089002302 · doi:10.1017/S0022112089002302
[28] Lajeunesse, E., Malverti, L. & Charru, F.2010Bed load transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res.115, F4.10.1029/2009JF001628 · doi:10.1029/2009JF001628
[29] Lanckriet, T. & Puleo, J. A.2015A semianalytical model for sheet flow layer thickness with application to the swash zone. J. Geophys. Res.120 (2), 1333-1352.10.1002/2014JC010378 · doi:10.1002/2014JC010378
[30] Lanckriet, T., Puleo, J. A., Masselink, G., Turner, I. L., Conley, D., Blenkinsopp, C. & Russell, P.2013Comprehensive field study of swash-zone processes. Part II. Sheet flow sediment concentrations during quasi-steady backwash. J. Waterways Port Coast. Ocean Engng ASCE140 (1), 29-42.10.1061/(ASCE)WW.1943-5460.0000209 · doi:10.1061/(ASCE)WW.1943-5460.0000209
[31] Liu, P. L.-F., Park, Y. S. & Lara, J. L.2007Long-wave-induced flows in an unsaturated permeable seabed. J. Fluid Mech.586, 323-345.10.1017/S0022112007007057S0022112007007057 · Zbl 1122.76085 · doi:10.1017/S0022112007007057
[32] Madsen, O. S.1974Stability of a sand bed under breaking waves. In Proceedings of the 14th International Conference on Coastal Engineering, pp. 776-794. ASCE.
[33] Madsen, O. S. & Durham, W. M.2007Pressure-induced subsurface sediment transport in the surf zone. In Proceedings Coastal Sediments’ 07 Conference, pp. 82-95. ASCE.10.1061/40926(239)7
[34] Mignot, E., Hurther, D., Chassagneux, F.-X. & Barnoud, J.-M.2009A field study of the ripple vortex shedding process in the shoaling zone of a macro-tidal sandy beach. J. Coast. Res.SI 56, 1776-1780.
[35] Nielsen, P.1992Coastal Bottom Boundary Layers and Sediment Transport. World Scientific.10.1142/1269 · doi:10.1142/1269
[36] O’Donoghue, T. & Wright, S.2004Concentrations in oscillatory sheet flow for well sorted and graded sands. Coast. Engng50 (3), 117-138.10.1016/j.coastaleng.2003.09.004 · doi:10.1016/j.coastaleng.2003.09.004
[37] Prel, P., Michallet, H. & Barthélemy, E.2011Flume experiments on wave non-linear interactions effects on beach morphodynamics. J. Coast. Res.SI 64, 2053-2057.
[38] Pujara, N. & Liu, P. L.-F.2014Direct measurements of local bed shear stress in the presence of pressure gradients. Exp. Fluids55 (7), 1-13.10.1007/s00348-014-1767-8 · doi:10.1007/s00348-014-1767-8
[39] Rodríguez-Abudo, S. & Foster, D. L.2014Unsteady stress partitioning and momentum transfer in the wave bottom boundary layer over movable rippled beds. J. Geophys. Res. Oceans119, 8530-8551.10.1002/2014JC010240 · doi:10.1002/2014JC010240
[40] Rodríguez-Abudo, S., Foster, D. L. & Henriquez, M.2013Spatial variability of the wave bottom boundary layer over movable rippled beds. J. Geophys. Res. Oceans118, 3490-3506.10.1002/jgrc.20256 · doi:10.1002/jgrc.20256
[41] Ruessink, B. G., Michallet, H., Abreu, T., Sancho, F., Van der A, D. A., Van der Werf, J. J. & Silva, P. A.2011Observations of velocities, sand concentrations, and fluxes under velocity-asymmetric oscillatory flows. J. Geophys. Res.116, C03004.10.1029/2010JC006443 · doi:10.1029/2010JC006443
[42] Scholtès, L., Chareyre, B., Michallet, H., Catalano, E. & Marzougui, D.2015Modeling wave-induced pore pressure and effective stress in a granular seabed. Contin. Mech. Thermodyn.27, 305-323.10.1007/s00161-014-0377-2 · doi:10.1007/s00161-014-0377-2
[43] Shields, A.1936Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Preussischen Versuchsanstalt für Wasserbau und Schiffbau26.
[44] Sleath, J. F. A.1987Turbulent oscillatory flow over rough beds. J. Fluid Mech.182, 369-409.10.1017/S0022112087002374S0022112087002374 · doi:10.1017/S0022112087002374
[45] Sleath, J. F. A.1994Bedload transport in oscillatory flow. In Sediment Transport Mechanisms in Coastal Environments and Rivers, Proceedings EUROMECH 310 Conference, pp. 93-106. World Scientific.
[46] Sleath, J. F. A.1999Conditions for plug formation in oscillatory flow. Cont. Shelf Res.19 (13), 1643-1664.10.1016/S0278-4343(98)00096-X · doi:10.1016/S0278-4343(98)00096-X
[47] Soulsby, R.1997Dynamics of Marine Sands: a Manual for Practical Applications. Thomas Telford.
[48] Suarez, L., Barthelemy, E., Berni, C., Chauchat, J., Michallet, H. & Cienfuegos, R.2014Vertical distribution of skewness and asymmetry in a boundary layer on a mobile bed. Experiment and k-𝜔 model comparison. La Houille Blanche (2), 88-94.10.1051/lhb/2014020 · doi:10.1051/lhb/2014020
[49] Sumer, B. M., Guner, H. A. A., Hansen, N. M., Fuhrman, D. R. & Fredsøe, J.2013Laboratory observations of flow and sediment transport induced by plunging regular waves. J. Geophys. Res. Oceans118, 6161-6182.10.1002/2013JC009324 · doi:10.1002/2013JC009324
[50] Sumer, B. M., Hatipoglu, F., Fredsøe, J. & Sumer, S. K.2006The sequence of sediment behaviour during wave-induced liquefaction. Sedimentology53 (3), 611-629.10.1111/j.1365-3091.2006.00763.x · doi:10.1111/j.1365-3091.2006.00763.x
[51] Sumer, B. M., Kozakiewicz, A., Fredsøe, J. & Deigaard, R.1996Velocity and concentration profiles in sheet-flow layer of movable bed. J. Hydraul. Engng122, 549-558.10.1061/(ASCE)0733-9429(1996)122:10(549) · doi:10.1061/(ASCE)0733-9429(1996)122:10(549)
[52] Terrile, E., Reniers, A. J. H. M., Stive, M. J. F., Tromp, M. & Verhagen, H. J.2006Incipient motion of coarse particles under regular shoaling waves. Coast. Engng53 (1), 81-92.10.1016/j.coastaleng.2005.08.004 · doi:10.1016/j.coastaleng.2005.08.004
[53] Wilson, K. C.1987Analysis of bed-load motion at high shear stress. J. Hydraul. Engng113, 97-103.10.1061/(ASCE)0733-9429(1987)113:1(97) · doi:10.1061/(ASCE)0733-9429(1987)113:1(97)
[54] Yamamoto, T., Koning, H. L., Sellmeijer, H. & van Hijum, E.1978On the response of a poro-elastic bed to water waves. J. Fluid Mech.87 (1), 193-206.10.1017/S0022112078003006S0022112078001548 · doi:10.1017/S0022112078003006
[55] Yuan, J. & Madsen, O. S.2014Experimental study of turbulent oscillatory boundary layers in an oscillating water tunnel. Coast. Engng89, 63-84.10.1016/j.coastaleng.2014.03.007 · doi:10.1016/j.coastaleng.2014.03.007
[56] Zala Flores, N. & Sleath, J. F. A.1998Mobile layer in oscillatory sheet flow. J. Geophys. Res.103 (C6), 12783-12812.10.1029/98JC00691 · doi:10.1029/98JC00691
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.