×

Optimal control of a rabies epidemic model with a birth pulse. (English) Zbl 1315.92074

Summary: A system of ordinary differential equations describes the population dynamics of a rabies epidemic in raccoons. The model accounts for the dynamics of a vaccine, including loss of vaccine due to animal consumption and loss from factors other than racoon uptake. A control method to reduce the spread of disease is introduced through temporal distribution of vaccine packets. This work incorporates the effect of the seasonal birth pulse in the racoon population and the attendant increase in new-borns which are susceptible to the diseases, analysing the impact of the timing and length of this pulse on the optimal distribution of vaccine packets. The optimization criterion is to minimize the number of infected raccoons while minimizing the cost of distributing the vaccine. Using an optimal control setting, numerical results illustrate strategies for distributing the vaccine depending on the timing of the infection outbreak with respect to the birth pulse.

MSC:

92D30 Epidemiology
34B60 Applications of boundary value problems involving ordinary differential equations

References:

[1] DOI: 10.1111/j.1461-0248.2005.00879.x · doi:10.1111/j.1461-0248.2005.00879.x
[2] Asano E., Math. Biosci. Eng. 5 pp 219– (2008) · Zbl 1158.92324 · doi:10.3934/mbe.2008.5.219
[3] Clayton T. J., Optimal control of epidemic models involving rabies and West Nile viruses (2008)
[4] Coyne M. J., Amer. J. Vet. Res. 50 pp 2148– (1989)
[5] DOI: 10.1080/17513750701605515 · Zbl 1284.92101 · doi:10.1080/17513750701605515
[6] DOI: 10.1093/imammb/18.1.1 · doi:10.1093/imammb/18.1.1
[7] Fleming W. H., Deterministic and Stochastic Optimal Control (1975) · Zbl 0323.49001
[8] DOI: 10.1016/j.chaos.2005.02.032 · Zbl 1064.92039 · doi:10.1016/j.chaos.2005.02.032
[9] Gehrt S. D., Wild Animals of North America pp 1– (2003)
[10] DOI: 10.1016/j.physd.2003.08.008 · Zbl 1040.92046 · doi:10.1016/j.physd.2003.08.008
[11] Hanlon C. A., Emerging Infections pp 59– (1998) · doi:10.1128/9781555816940.ch5
[12] Jackson A. C., Rabies (2002)
[13] DOI: 10.1137/0315019 · Zbl 0354.49008 · doi:10.1137/0315019
[14] Lukes D. L., Differential Equations: Classical to Controlled, Mathematics in Science and Engineering (1982) · Zbl 0509.34003
[15] Murray J. D., J. Theoret. Biol. 130 pp 327– (1991)
[16] DOI: 10.1098/rspb.1986.0078 · doi:10.1098/rspb.1986.0078
[17] Pontragin L. S., The Mathematical Theory of Optimal Processes (1962)
[18] DOI: 10.1016/S0025-5564(97)10016-5 · Zbl 0928.92027 · doi:10.1016/S0025-5564(97)10016-5
[19] Rupprecht C. E., Dev. Biol 11 pp 173– (2004)
[20] Russell C. A., PLoS ONE 20 pp 1– (2006)
[21] DOI: 10.1371/journal.pbio.0030088 · doi:10.1371/journal.pbio.0030088
[22] DOI: 10.1016/j.virusres.2005.03.012 · doi:10.1016/j.virusres.2005.03.012
[23] Smith D. L., Proc. Natl. Acad. Sci. 99 pp 3668– (2002)
[24] DOI: 10.1016/j.prevetmed.2005.07.009 · doi:10.1016/j.prevetmed.2005.07.009
[25] Smith J., Clin. Microbiol. Rev. 9 pp 166– (1996)
[26] DOI: 10.1007/s002850100121 · Zbl 0990.92033 · doi:10.1007/s002850100121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.