×

Modelling of rabies transmission dynamics using optimal control analysis. (English) Zbl 1437.92109

Summary: We examine an optimal way of eradicating rabies transmission from dogs into the human population, using preexposure prophylaxis (vaccination) and postexposure prophylaxis (treatment) due to public education. We obtain the disease-free equilibrium, the endemic equilibrium, the stability, and the sensitivity analysis of the optimal control model. Using the Latin hypercube sampling (LHS), the forward-backward sweep scheme and the fourth-order Range-Kutta numerical method predict that the global alliance for rabies control’s aim of working to eliminate deaths from canine rabies by 2030 is attainable through mass vaccination of susceptible dogs and continuous use of pre- and postexposure prophylaxis in humans.

MSC:

92D30 Epidemiology

References:

[1] Hayman, D. T. S.; Johnson, N.; Horton, D. L.; Hedge, J.; Wakeley, P. R.; Banyard, A. C.; Zhang, S. F.; Alhassan, A., Evolutionary history of rabies in Ghana, PLoS Neglected Tropical Diseases, 5, 4 (2011) · doi:10.1371/journal.pntd.0001001
[2] Rabies fact sheet, 2016, http://www.who.int/mediacentre/factsheets/fs099/en/
[3] Rupprecht, C. E.; Briggs, D.; Brown, C. M.; Franka, R.; Katz, S. L.; Kerr, H. D., Use of A Reduced (4-Dose) Vaccine Schedule for Postexposure Prophylaxis to Prevent Human Rabies: Recommendations of The Advisory Committee on Immunization Practices (2010), Department of Health and Human Services, Centers for Disease Control and Prevention
[4] Neilan, R. L. M., Optimal control applied to population and disease models [P.hD. thesis] (2009), Knoxville, Tenn, USA: University of Tennessee, Knoxville, Tenn, USA
[5] Isere, A. O.; Osemwenkhae, J. E.; Okuonghae, D., Optimal control model for the outbreak of cholera in Nigeria, African Journal of Mathematics and Computer Science Research, 7, 2, 24-30 (2014) · doi:10.5897/AJMCSR2013.0527
[6] Rodrigues, H. S., Optimal control and numerical optimization applied to epidemiological models, 2014, https://arxiv.org/abs/1401.7390?context=math
[7] Lashari, A. A., Mathematical Modeling and Optimal Control of A Vector (2012), Islamabad, Pakistan: National University of Modern Languages, Islamabad, Pakistan
[8] Abdelrazec, A., Modeling, Dynamics and Optimal Control of West Nile Virus with Seasonality (2014), Toronto, Canada: York University, Toronto, Canada
[9] Greenhalgh, D., Age-structured models and optimal control in mathematical equidemiology: a survey, 2010
[10] Stashko, A., The Effects of Prevention and Treatment Interventions in A Microeconomic Model of HIV Transmission (2012), Durham, NC, USA: Duke University, Durham, NC, USA
[11] Seidu, B.; Makinde, O. D., Optimal control of HIV/AIDS in the workplace in the presence of careless individuals, Computational and Mathematical Methods in Medicine, 2014 (2014) · Zbl 1307.92354 · doi:10.1155/2014/831506
[12] Njankou, S. D. D.; Nyabadza, F., An optimal control model for Ebola virus disease, Journal of Biological Systems, 24, 1, 29-49 (2016) · Zbl 1343.92509 · doi:10.1142/S0218339016500029
[13] Aubert, M., Costs and benefits of rabies control in wildlife in France, Revue Scientifique et Technique de l’OIE, 18, 2, 533-543 (1999) · doi:10.20506/rst.18.2.1174
[14] Anderson, R. M.; May, R. M., Population biology of infectious diseases, Proceedings of the Dahlem Workshop, Springer
[15] Bohrer, G.; Shem-Tov, S.; Summer, E.; Or, K.; Saltz, D., The effectiveness of various rabies spatial vaccination patterns in a simulated host population with clumped distribution, Ecological Modelling, 152, 2-3, 205-211 (2002) · doi:10.1016/S0304-3800(02)00003-0
[16] Levin, S. A.; Hallam, T. G.; Gross, L. J., Applied Mathematical Ecology. Applied Mathematical Ecology, Biomathematics, 18 (2012), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-642-61317-3
[17] Coyne, M. J.; Smith, G.; McAllister, F. E., Mathematic model for the population biology of rabies in raccoons in the mid-Atlantic states, American journal of veterinary research, 50, 12, 2148-2154 (1989)
[18] Childs, J. E.; Curns, A. T.; Dey, M. E.; Real, L. A.; Feinstein, L.; Bjørnstad, O. N.; Krebs, J. W., Predicting the local dynamics of epizootic rabies among raccoons in the United States, Proceedings of the National Academy of Sciences of the United States of America, 97, 25, 13666-13671 (2000) · doi:10.1073/pnas.240326697
[19] Hampson, K.; Dushoff, J.; Bingham, J.; Brückner, G.; Ali, Y. H.; Dobson, A., Synchronous cycles of domestic dog rabies in sub-Saharan Africa and the impact of control efforts, Proceedings of the National Academy of Sciences of the United States of America, 104, 18, 7717-7722 (2007) · doi:10.1073/pnas.0609122104
[20] Carroll, M. J.; Singer, A.; Smith, G. C.; Cowan, D. P.; Massei, G., The use of immunocontraception to improve rabies eradication in urban dog populations, Wildlife Research, 37, 8, 676-687 (2010) · doi:10.1071/WR10027
[21] Wang, X.; Lou, J., Two dynamic models about rabies between dogs and human, Journal of Biological Systems, 16, 4, 519-529 (2008) · Zbl 1355.92132 · doi:10.1142/S0218339008002666
[22] Yang, W.; Lou, J., The dynamics of an interactional model of rabies transmitted between human and dogs, Bollettino della Unione Matematica Italiana. Serie 9, 2, 3, 591-605 (2009) · Zbl 1178.92050
[23] Zinsstag, J.; Dürr, S.; Penny, M. A.; Mindekem, R.; Roth, F.; Menendez Gonzalez, S.; Naissengar, S.; Hattendorf, J., Transmission dynamics and economics of rabies control in dogs and humans in an African city, Proceedings of the National Academy of Sciences of the United States of America, 106, 35, 14996-15001 (2009) · doi:10.1073/pnas.0904740106
[24] Ding, W.; Gross, L. J.; Langston, K.; Lenhart, S.; Real, L. A., Rabies in raccoons: optimal control for a discrete time model on a spatial grid, Journal of Biological Dynamics, 1, 4, 379-393 (2007) · Zbl 1284.92101 · doi:10.1080/17513750701605515
[25] Smith, G. C.; Cheeseman, C. L., A mathematical model for the control of diseases in wildlife populations: culling, vaccination and fertility control, Ecological Modelling, 150, 1-2, 45-53 (2002) · doi:10.1016/S0304-3800(01)00471-9
[26] Tchuenche, J. M.; Bauch, C. T., Can culling to prevent monkeypox infection be counter-productive? Scenarios from a theoretical model, Journal of Biological Systems, 20, 3, 259-283 (2012) · Zbl 1279.92081 · doi:10.1142/S0218339012500106
[27] Zhang, J.; Jin, Z.; Sun, G.-Q.; Zhou, T.; Ruan, S., Analysis of rabies in China: transmission dynamics and control, PLoS ONE, 6, 7, e20891 (2011) · doi:10.1371/journal.pone.0020891
[28] Grace, O. A., Modelling of the spread of rabies with pre-exposure vaccination of humans, Mathematical Theory and Modeling, 4, 8 (2014)
[29] Wiraningsih, E. D.; Agusto, F.; Aryati, L.; Lenhart, S.; Toaha, S.; Widodo; Govaerts, W., Stability analysis of rabies model with vaccination effect and culling in dogs, Applied Mathematical Sciences, 9, 77-80, 3805-3817 (2015) · Zbl 1368.92194 · doi:10.12988/ams.2015.53197
[30] Global alliance for rabies control, 2016, https://rabiesalliance.org/
[31] CIA world factbook and other sources, 2016, http://www.theodora.com/wfbcurrent/ghana/ghana_people.html
[32] Birkhoff, G.; Rota, G., Ordinary differential equations (1962), New York, NY, USA: Ginn & Co, New York, NY, USA · Zbl 0183.35601
[33] Lakshmikantham, V.; Leela, S.; Kaul, S., Comparison principle for impulsive differential equations with variable times and stability theory, Nonlinear Analysis. Theory, Methods & Applications, 22, 4, 499-503 (1994) · Zbl 0797.34058 · doi:10.1016/0362-546X(94)90170-8
[34] Diekmann, O.; Heesterbeek, J. A.; Metz, J. A., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28, 4, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[35] Pielou, E. C., An introduction to Mathematical Ecology (1969), Hoboken, NJ, USA: Wiley-InterScience, Hoboken, NJ, USA · Zbl 0259.92001
[36] May, R. C., Stable limit cycles in pre-predator population. A comment, Science, 1074 (1973)
[37] Martcheva, M., An Introduction to Mathematical Epidemiology. An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, 61 (2015), New York, NY, USA: Springer, New York, NY, USA · Zbl 1333.92006 · doi:10.1007/978-1-4899-7612-3
[38] Yusuf, T. T.; Benyah, F., Optimal control of vaccination and treatment for an SIR epidemiological model, World Journal of Modelling and Simulation, 8, 3, 194-204 (2012)
[39] Hove-Musekwa, S. D.; Nyabadza, F.; Mambili-Mamboundou, H., Modelling hospitalization, home-based care, and individual withdrawal for people living with HIV/AIDS in high prevalence settings, Bulletin of Mathematical Biology, 73, 12, 2888-2915 (2011) · Zbl 1402.92276 · doi:10.1007/s11538-011-9651-7
[40] De León, C. V., Constructions of Lyapunov functions for classics SIS, SIR and SIRS epidemic model with variable population size, Foro-Red-Mat: Revista Electrónica De Contenido Matemático, 26, 5, article 1 (2009)
[41] LaSalle, J., The stability of dynamical systems, Proceedings of the CBMS-NSF Regional Conference Series in Applied Mathematics 25, SIAM · Zbl 0364.93002
[42] Zhang, T.; Wang, K.; Zhang, X.; Jin, Z., Modeling and analyzing the transmission dynamics of HBV epidemic in Xinjiang, China, PLoS ONE, 10, 9 (2015) · doi:10.1371/journal.pone.0138765
[43] Sharomi, O.; Malik, T., Optimal control in epidemiology, Annals of Operations Research, 251, 1-2, 55-71 (2017) · Zbl 1373.92140 · doi:10.1007/s10479-015-1834-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.