×

The Hodge conjecture and arithmetic quotients of complex balls. (English) Zbl 1349.14031

This paper studies the cohomology of a Shimura variety associated to a unitary group, with results related to the Hodge and Tate conjectures for these varieties. The Shimura variety is assumed to be smooth, connected and compact, and associated to an algebraic group \(G\) such that \(G(\mathbb R) \cong U(p,q) \times G^c\), where \(p, q > 0\), and \(G^c\) is compact.
For the sake of simplicity we describe the results of the paper under the assumption that \(q=1\), though a more general situation is considered in the paper. In this situation, the authors show that for “small” \(n\), the cohomology groups \(H^n (S(\mathbb C), \mathbb C)\) are generated by cup products of classes of type \((1,1)\), holomorphic forms, anti-holomorphic forms, and Kudla-Millson cycle classes. This is used to obtain the general Hodge conjecture (even without Grothendieck’s modification) for \(N^cH^n(S(\mathbb C), \mathbb Q)\), where \(N^{\bullet}\) is the coniveau filtration, and either \(2n-c \leq p\) or \(2n+c \geq 3p\). As a corollary they obtain the usual Hodge conjecture for \(H^{2n}(S(\mathbb C), \mathbb Q)\) when either \(0 \leq n \leq \frac{1}{3} p\), or, \(\frac{2}{3} p \leq n \leq p\). A similar result holds for the Tate conjecture.

MSC:

14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14G35 Modular and Shimura varieties
11G18 Arithmetic aspects of modular and Shimura varieties
22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] Arancibia, N., Moeglin, C. & Renard, D., Paquets d’Arthur des groupes classiques et unitaires. Preprint, 2015. arXiv:1507.01432 [RT]. · Zbl 1420.22018
[2] Arthur J.: On local character relations. Selecta Math. 2, 501-579 (1996) · Zbl 0923.11081 · doi:10.1007/BF02433450
[3] Arthur, J., An introduction to the trace formula, in Harmonic Analysis, the Trace Formula, and Shimura Varieties, Clay Math. Proc., 4, pp. 1-263. Amer. Math. Soc., Providence, RI, 2005. · Zbl 1152.11021
[4] Bergeron N.: Restriction de la cohomologie d’une variété de Shimura à à ses sous-variétés. Transform. Groups 14, 41-86 (2009) · Zbl 1165.14021 · doi:10.1007/s00031-008-9047-4
[5] Bergeron, N. & Clozel, L., Spectre automorphe des variétés hyperboliques et applications topologiques. Astérisque, 303 (2005), 218 pp. · Zbl 1098.11035
[6] Bergeron N., Clozel L.: Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques. Invent. Math. 192, 505-532 (2013) · Zbl 1309.22014
[7] Bergeron, N., Millson, J. & Moeglin, C., Hodge type theorems for arithmetic manifolds associated to orthogonal groups. To appear in Int. Math. Res. Not. arXiv:1110.3049 [NT]. · Zbl 1411.11054
[8] Blasius, D. & Rogawski, J., Cohomology of congruence subgroups of SU(2,1)p and Hodge cycles on some special complex hyperbolic surfaces, in Regulators in Analysis, Geometry and Number Theory, Progr. Math., 171, pp. 1-15. Birkhäuser, Boston, MA, 2000. · Zbl 1135.11318
[9] Borel, A. & Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Mathematical Surveys and Monographs, 67. Amer. Math. Soc., Providence, RI, 2000. · Zbl 0980.22015
[10] Chern, S.-S., On a generalization of Kähler geometry, in Algebraic Geometry and Topology, pp. 103-121. Princeton Univ. Press, Princeton, NJ, 1957. · Zbl 0078.14103
[11] Cossutta M.: Asymptotique des nombres de Betti des variétés arithmétiques. Duke Math. J., 150, 443-488 (2009) · Zbl 1263.11060 · doi:10.1215/00127094-2009-057
[12] Deligne, P., Travaux de Shimura, in Séminaire Bourbaki (1970/71), Exp. No. 389, Lecture Notes in Mathematics, 244, pp. 123-165. Springer, Berlin-Heidelberg, 1971. · Zbl 0225.14007
[13] Faltings G.: p-adic Hodge theory. J. Amer, Math. Soc. 1, 255-299 (1988) · Zbl 0764.14012
[14] Flath, D., Decomposition of representations into tensor products, in Automorphic Forms, Representations and L-Functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 179-183. Amer. Math. Soc., Providence, RI, 1979. · Zbl 0879.11026
[15] Folland, G. B., Harmonic Analysis in Phase Space. Annals of Mathematics Studies, 122. Princeton Univ. Press, Princeton, NJ, 1989. · Zbl 0682.43001
[16] Fulton, W., Young Tableaux. London Mathematical Society Student Texts, 35. Cambridge Univ. Press, Cambridge, 1997. · Zbl 0177.49002
[17] Fulton, W. & Harris, J., Representation Theory. Graduate Texts in Mathematics, 129. Springer, New York, 1991. · Zbl 0744.22001
[18] Gan W.T., Takeda S.: On the regularized Siegel-Weil formula (the second term identity) and non-vanishing of theta lifts from orthogonal groups. J. Reine Angew. Math. 659, 175-244 (2011) · Zbl 1291.11083
[19] Gelbart, S., Examples of dual reductive pairs, in Automorphic Forms, Representations and L-Functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 287-296. Amer. Math. Soc., Providence, RI, 1979. · Zbl 0375.22009
[20] Gelbart, S., Piatetski-Shapiro, I. & Rallis, S., Explicit Constructions of Automorphic L-Functions. Lecture Notes in Mathematics, 1254. Springer, Berlin-Heidelberg, 1987. · Zbl 0612.10022
[21] Gelbart S., Rogawski J., Soudry D.: On periods of cusp forms and algebraic cycles for U(3). Israel J. Math. 83, 213-252 (1993) · Zbl 0789.11033 · doi:10.1007/BF02764643
[22] Gelbart S., Rogawski J., Soudry D.: Periods of cusp forms and L-packets. C. R. Acad. Sci. Paris Sér. I Math. 317, 717-722 (1993) · Zbl 0807.11028
[23] Gelbart S., Rogawski J., Soudry D.: Endoscopy, theta-liftings, and period integrals for the unitary group in three variables. Ann. of Math. 145, 419-476 (1997) · Zbl 1068.11502 · doi:10.2307/2951840
[24] Ginzburg D., Jiang D., Soudry D.: Poles of L-functions and theta liftings for orthogonal groups. J. Inst. Math. Jussieu 8, 693-741 (2009) · Zbl 1239.11063 · doi:10.1017/S1474748009000097
[25] Godement, R. & Jacquet, H., Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, 260. Springer, Berlin-Heidelberg, 1972. · Zbl 0244.12011
[26] Gong Z., Grenié L.: An inequality for local unitary theta correspondence. Ann. Fac. Sci. Toulouse Math. 20, 167-202 (2011) · Zbl 1254.11049 · doi:10.5802/afst.1289
[27] Griffiths, P. & Harris, J., Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley-Interscience, New York, 1978. · Zbl 0408.14001
[28] Grothendieck A.: Hodge’s general conjecture is false for trivial reasons. Topology 8, 299-303 (1969) · Zbl 0177.49002 · doi:10.1016/0040-9383(69)90016-0
[29] Harris M.: L-functions of 2 × 2 unitary groups and factorization of periods of Hilbert modular forms. J. Amer. Math. Soc. 6, 637-719 (1993) · Zbl 0779.11023
[30] Harris M., Kudla S. S., Sweet W. J.: Theta dichotomy for unitary groups. J. Amer. Math. Soc. 9, 941-1004 (1996) · Zbl 0870.11026 · doi:10.1090/S0894-0347-96-00198-1
[31] Harris M., Li J.-S.: A Lefschetz property for subvarieties of Shimura varieties. J. Algebraic Geom. 7, 77-122 (1998) · Zbl 0954.14016
[32] He H., Hoffman J. W.: Picard groups of Siegel modular 3-folds and θ-liftings. J. Lie Theory 22, 769-801 (2012) · Zbl 1252.14018
[33] Hirzebruch F., Zagier D.: Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math. 36, 57-113 (1976) · Zbl 0332.14009 · doi:10.1007/BF01390005
[34] Howe, R., θ-series and invariant theory, in Automorphic Forms, Representations and L-Functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 275-285. Amer. Math. Soc., Providence, RI, 1979. · Zbl 1252.14018
[35] Howe R.: Transcending classical invariant theory. J. Amer. Math. Soc. 2, 535-552 (1989) · Zbl 0716.22006 · doi:10.1090/S0894-0347-1989-0985172-6
[36] Ichino A.: A regularized Siegel-Weil formula for unitary groups. Math. Z. 247, 241-277 (2004) · Zbl 1071.11022 · doi:10.1007/s00209-003-0580-5
[37] Jacquet, H., Shalika, J.A., A non-vanishing theorem for zeta functions of GLn. Invent. Math., 38 (1976/77), 1-16. · Zbl 0349.12006
[38] Johnson J. F.: Lie algebra cohomology and the resolution of certain Harish-Chandra modules. Math. Ann. 267, 377-393 (1984) · Zbl 0524.22016 · doi:10.1007/BF01456096
[39] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representations and harmonic polynomials. Invent. Math. 44, 1-47 (1978) · Zbl 0375.22009 · doi:10.1007/BF01389900
[40] Kottwitz R. E.: Points on some Shimura varieties over finite fields. J. Amer. Math. Soc. 5, , 373-444 (1992) · Zbl 0796.14014 · doi:10.1090/S0894-0347-1992-1124982-1
[41] Kottwitz, R. E. & Shelstad, D., Foundations of twisted endoscopy. Astérisque, 255 (1999), 190 pp. · Zbl 0958.22013
[42] Kudla S. S.: Splitting metaplectic covers of dual reductive pairs. Israel J. Math. 87, 361-401 (1994) · Zbl 0840.22029 · doi:10.1007/BF02773003
[43] Kudla S. S.: Algebraic cycles on Shimura varieties of orthogonal type. Duke Math. J. 86, 39-78 (1997) · Zbl 0879.11026 · doi:10.1215/S0012-7094-97-08602-6
[44] Kudla S. S., Millson J.J.: The theta correspondence and harmonic forms. I. Math. Ann. 274, 353-378 (1986) · Zbl 0594.10020 · doi:10.1007/BF01457221
[45] Kudla S. S., Millson J.J.: The theta correspondence and harmonic forms. II. Math. Ann. 277, 267-314 (1987) · Zbl 0618.10022
[46] Kudla, S.S. & Millson, J.J. Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. Inst. Hautes Études Sci. Publ. Math., 71 (1990), 121-172. · Zbl 0722.11026
[47] Kudla S. S., Rallis S.: A regularized Siegel-Weil formula: the first term identity. Ann. of Math. 140, 1-80 (1994) · Zbl 0818.11024 · doi:10.2307/2118540
[48] Kudla, S. S. & Sweet, W. J., Jr., Degenerate principal series representations for U(n, n). Israel J. Math., 98 (1997), 253-306. · Zbl 0896.22007
[49] Landherr W.: Äquivalenz Hermitescher Formenüber einem beliebigen algebraischen Zahlkörper. Abh. Math. Sem. Univ. Hamburg 11, 245-248 (1935) · JFM 62.0170.01 · doi:10.1007/BF02940728
[50] Langlands R. P., Shelstad D.: On the definition of transfer factors. Math. Ann. 278, 219-271 (1987) · Zbl 0644.22005 · doi:10.1007/BF01458070
[51] Li J.-S.: Nonvanishing theorems for the cohomology of certain arithmetic quotients. J. Reine Angew. Math. 428, 177-217 (1992) · Zbl 0749.11032
[52] Matsushima Y.: A formula for the Betti numbers of compact locally symmetric Riemannian manifolds. J. Differential Geom. 1, 99-109 (1967) · Zbl 0164.22101
[53] Milne, J. S., Canonical models of (mixed) Shimura varieties and automorphic vector bundles, in Automorphic Forms, Shimura Varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., 10, pp. 283-414. Academic Press, Boston, MA, 1990. · Zbl 1165.14021
[54] Mínguez, A., Unramified representations of unitary groups, in On the Stabilization of the Trace Formula, Stab. Trace Formula Shimura Var. Arith. Appl., 1, pp. 389-410. Int. Press, Somerville, MA, 2011. · Zbl 0924.22012
[55] Moeglin C.: Non nullité de certains relêvements par séries théta. J. Lie Theory, 7, 201-229 (1997) · Zbl 0885.11032
[56] Moeglin C., Vignéras, M.-F. & Waldspurger, J.-L., Correspondances de Howe sur un corps p-adique. Lecture Notes in Mathematics, 1291. Springer, Berlin-Heidelberg, 1987. · Zbl 0642.22002
[57] Moeglin C., Waldspurger J.-L.: Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup. 22, 605-674 (1989) · Zbl 0696.10023
[58] Moeglin, C. & Waldspurger, J.-L.,Stabilisation de la formule des traces tordue X: stabilisation spectrale. Preprint, 2014. arXiv:1412.2981 [RT]. · Zbl 0924.22012
[59] Mok, C. P., Endoscopic classification of representations of quasi-split unitary groups. Mem. Amer. Math. Soc., 235 (2015), 248 pp. · Zbl 1316.22018
[60] Ngô B. C.: Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci. 111, 1-169 (2010) · Zbl 1200.22011 · doi:10.1007/s10240-010-0026-7
[61] Paul A.: Howe correspondence for real unitary groups. J. Funct. Anal. 159, 384-431 (1998) · Zbl 0924.22012 · doi:10.1006/jfan.1998.3330
[62] Rallis S.: On the Howe duality conjecture. Compos. Math. 51, 333-399 (1984) · Zbl 0624.22011
[63] Salamanca-Riba S. A.: On the unitary dual of real reductive Lie groups and the Ag(λ) modules: the strongly regular case. Duke Math. J. 96, 521-546 (1999) · Zbl 0941.22014 · doi:10.1215/S0012-7094-99-09616-3
[64] Shelstad D.: Embeddings of L-groups. Canad. J. Math. 33, 513-558 (1981) · Zbl 0457.22006 · doi:10.4153/CJM-1981-044-4
[65] Shelstad D.: On geometric transfer in real twisted endoscopy. Ann. of Math. 176, 1919-1985 (2012) · Zbl 1259.22007 · doi:10.4007/annals.2012.176.3.9
[66] Tadić M.: Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). Ann. Sci. École Norm. Sup. 19, 335-382 (1986) · Zbl 0614.22005
[67] Tan V.: Poles of Siegel Eisenstein series on U(n,n). Canad. J. Math. 51, 164-175 (1999) · Zbl 0963.11028 · doi:10.4153/CJM-1999-010-4
[68] Tate, J., Conjectures on algebraic cycles in l-adic cohomology, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, pp. 71-83. Amer. Math. Soc., Providence, RI, 1994. · Zbl 0814.14009
[69] Tits, J., Reductive groups over local fields, in Automorphic Forms, Representations and L-Functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 29-69. Amer. Math. Soc., Providence, RI, 1979. · Zbl 0963.11028
[70] Vogan, D. A., Jr., The unitary dual of GL(n) over an Archimedean field. Invent. Math., 83 (1986), 449-505. · Zbl 0598.22008
[71] Vogan, D. A., Jr. & Zuckerman, G. J., Unitary representations with nonzero cohomology. Compos. Math., 53 (1984), 51-90. · Zbl 0692.22008
[72] Waldspurger, J.-L., L’endoscopie tordue n’est pas si tordue. Mem. Amer. Math. Soc., 194 (2008), 261 pp. · Zbl 1146.22016
[73] Waldspurger J.-L.: Les facteurs de transfert pour les groupes classiques: un formulaire. Manuscripta Math. 133, 41-82 (2010) · Zbl 1207.22011 · doi:10.1007/s00229-010-0363-3
[74] Waldspurger, J.-L., La formule des traces locale tordue. To appear in Mem. Amer. Math. Soc. arXiv:1205.1100 [RT]. · Zbl 1373.11042
[75] Waldspurger, J.-L., Stabilisation de la formule des traces tordue III: intégrales orbitales et endoscopie sur un corps local non-archimédien; réductions et preuves. Preprint, 2013. arXiv:1402.2753 [RT].
[76] Weil A.: Sur certains groupes d’opérateurs unitaires. Acta Math., 111, 143-211 (1964) · Zbl 0203.03305 · doi:10.1007/BF02391012
[77] Weil A.: Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math. 113, 1-87 (1965) · Zbl 0161.02304 · doi:10.1007/BF02391774
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.