×

Nonlinear finite volume scheme preserving positivity for 2D convection-diffusion equations on polygonal meshes. (English) Zbl 1459.65216

Summary: In this paper, a nonlinear finite volume scheme preserving positivity for solving 2D steady convection-diffusion equation on arbitrary convex polygonal meshes is proposed. First, the nonlinear positivity-preserving finite volume scheme is developed. Then, in order to avoid the computed solution beyond the upper bound, the cell-centered unknowns and auxiliary unknowns on the cell-edge are corrected. We prove that the present scheme can avoid the numerical solution beyond the upper bound. Our scheme is locally conservative and has only cell-centered unknowns. Numerical results show that our scheme preserves the above conclusion and has second-order accuracy for solution.

MSC:

65N08 Finite volume methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] Edwards, M. G.; Zheng, H., A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support, Journal of Computational Physics, 227, 22, 9333-9364 (2008) · Zbl 1231.76178 · doi:10.1016/j.jcp.2008.05.028
[2] Sheng, Z.; Yuan, G., The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes, Journal of Computational Physics, 230, 7, 2588-2604 (2011) · Zbl 1218.65120 · doi:10.1016/j.jcp.2010.12.037
[3] Morton, K., Numerical Solution of Convection-Diffusion Problems (1996), London, UK: Chapman & Hall, London, UK · Zbl 0861.65070
[4] Pert, G. J., Physical constraints in numerical calculations of diffusion, Journal of Computational Physics, 42, 1, 20-52 (1981) · Zbl 0498.76076 · doi:10.1016/0021-9991(81)90231-x
[5] Nordbotten, J. M.; Aavatsmark, I., Monotonicity conditions for control volume methods on uniform parallelogram grids in homogeneous media, Computational Geosciences, 9, 1, 61-72 (2005) · doi:10.1007/s10596-005-5665-2
[6] Lapin, A., Mixed hybrid finite element method for a variational inequality with a quasi-linear operator, Computational Methods in Applied Mathematics, 9, 4, 354-367 (2009) · Zbl 1186.65085 · doi:10.2478/cmam-2009-0023
[7] Friis, H. A.; Edwards, M. G., A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids, Journal of Computational Physics, 230, 1, 205-231 (2011) · Zbl 1427.76161 · doi:10.1016/j.jcp.2010.09.012
[8] Lipnikov, K.; Manzini, G.; Svyatskiy, D., Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems, Journal of Computational Physics, 230, 7, 2620-2642 (2011) · Zbl 1218.65117 · doi:10.1016/j.jcp.2010.12.039
[9] Le Potier, C., Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés, Comptes Rendus Mathematique, 341, 12, 787-792 (2005) · Zbl 1081.65086 · doi:10.1016/j.crma.2005.10.010
[10] Lipnikov, K.; Shashkov, M.; Svyatskiy, D.; Vassilevski, Y., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, Journal of Computational Physics, 227, 1, 492-512 (2007) · Zbl 1130.65113 · doi:10.1016/j.jcp.2007.08.008
[11] Yuan, G.; Sheng, Z., Monotone finite volume schemes for diffusion equations on polygonal meshes, Journal of Computational Physics, 227, 12, 6288-6312 (2008) · Zbl 1147.65069 · doi:10.1016/j.jcp.2008.03.007
[12] Danilov, A.; Vassilevski, Y., A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes, Russian Journal of Numerical Analysis and Mathematical Modelling, 24, 207-227 (2009) · Zbl 1166.65394 · doi:10.1515/rjnamm.2009.014
[13] Lipnikov, K.; Svyatskiy, D.; Vassilevski, Y., Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, Journal of Computational Physics, 228, 3, 703-716 (2009) · Zbl 1158.65083 · doi:10.1016/j.jcp.2008.09.031
[14] Sheng, Z.; Yue, J.; Yuan, G., Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes, SIAM Journal on Scientific Computing, 31, 4, 2915-2934 (2009) · Zbl 1195.65115 · doi:10.1137/080721558
[15] Sheng, Z.; Yuan, G., An improved monotone finite volume scheme for diffusion equation on polygonal meshes, Journal of Computational Physics, 231, 9, 3739-3754 (2012) · Zbl 1242.65219 · doi:10.1016/j.jcp.2012.01.015
[16] Wang, S.; Yuan, G.; Li, Y.; Sheng, Z., A monotone finite volume scheme for advection-diffusion equations on distorted meshes, International Journal for Numerical Methods in Fluids, 69, 7, 1283-1298 (2012) · Zbl 1253.76069 · doi:10.1002/fld.2640
[17] Sheng, Z.; Yuan, G., A cell-centered nonlinear finite volume scheme preserving fully positivity for diffusion equation, Journal of Scientific Computing, 68, 2, 521-545 (2016) · Zbl 1371.65114 · doi:10.1007/s10915-015-0148-7
[18] Sheng, Z.; Yuan, G., A new nonlinear finite volume scheme preserving positivity for diffusion equations, Journal of Computational Physics, 315, 182-193 (2016) · Zbl 1349.65582 · doi:10.1016/j.jcp.2016.03.053
[19] Lan, B.; Sheng, Z.; Yuan, G., A monotone finite volume scheme with second order accuracy for convection-diffusion equations on deformed meshes, Computer Physics Communication, 24, 1455-1476 (2018) · Zbl 1475.65170 · doi:10.4208/cicp.oa-2017-0127
[20] Lan, B.; Sheng, Z.; Yuan, G., A new finite volume scheme preserving positivity for radionuclide transport calculations in radioactive waste repository, International Journal of Heat and Mass Transfer, 121, 736-746 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.01.023
[21] Lan, B.; Sheng, Z.; Yuan, G., A new positive scheme for 2D convection-diffusion equation, ZAMM-Journal of Applied Mathematics and Mechanics, 99, 1-13 (2019) · Zbl 07805127
[22] Bertolazzi, E.; Manzini, G., A cell-centered second-order accurate finite volume method for convection-diffusion problems on unstructured meshes, Mathematical Models and Methods in Applied Sciences, 14, 8, 1235-1260 (2004) · Zbl 1079.65113 · doi:10.1142/s0218202504003611
[23] Lipnikov, K.; Svyatskiy, D.; Vassilevski, Y., A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes, Journal of Computational Physics, 229, 11, 4017-4032 (2010) · Zbl 1192.65140 · doi:10.1016/j.jcp.2010.01.035
[24] Zhang, Q.; Sheng, Z.; Yuan, G., A finite volume scheme preserving extremum principle for convection-diffusion equations on polygonal meshes, International Journal for Numerical Methods in Fluids, 84, 10, 616-632 (2017) · doi:10.1002/fld.4366
[25] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order (2001), Berlin, Germany: Springer-Verlag, Berlin, Germany · Zbl 1042.35002
[26] Sheng, Z.; Yuan, G., A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes, SIAM Journal on Scientific Computing, 30, 3, 1341-1361 (2008) · Zbl 1167.65049 · doi:10.1137/060665853
[27] van Lee, B., Towards the ultimate conservative difference scheme. V.A second-order sequel to Godunov’s method, Journal of Computational Physics, 32, 101-136 (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.