×

A multiscale method for heterogeneous bulk-surface coupling. (English) Zbl 1471.65132

The paper at hand deals with the numerical analysis of of numerical schemes for parabolic problems with dynamic boundary conditions. The authors explain how these models can be understood as limits of bulk-bulk coupling with a thin outer domain. Following [I. Lasiecka, Mathematical control theory of coupled PDEs. Philadelphia, PA: SIAM (2002; Zbl 1032.93002)] the paper considers the problem as a coupled problem where bulk- and surface dynamics are coupled via the boundary. The authors consider the weak formulation and the interpretation of the problem as a partial differential algebraic equation that gives rise to a saddle point structure. The authors design a class of inf-sup stable mixed finite element schemes that allows for independet discretisation in the bulk and on the surface.
This decomposition is particularly beneficial if bulk and surface dynamics have different characteristic lengths scales. This is illustrated by applying multiscale schemes on the surface and standard Lagrangian schemes in the interior. Convergence of a semi-spatially-discrete scheme is proven as well as explicit convergence rates for low-regularity solutions. These rates are independent of the oscillatory behavior of the heterogeneities. Thus, coarse discretization parameters that do not resolve the fine scales can be employed.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65L80 Numerical methods for differential-algebraic equations

Citations:

Zbl 1032.93002

References:

[1] R. Altmann, Regularization and Simulation of Constrained Partial Differential Equations, dissertation, Technische Universität Berlin, 2015, http://doi.org/10.14279/depositonce-4491.
[2] R. Altmann, A PDAE formulation of parabolic problems with dynamic boundary conditions, Appl. Math. Lett., 90 (2019), pp. 202-208, https://doi.org/10.1016/j.aml.2018.11.010. · Zbl 1411.35138
[3] R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun, Computational multiscale methods for linear heterogeneous poroelasticity, J. Comput. Math., 38 (2020), pp. 41-57. · Zbl 1463.65284
[4] R. Altmann and C. Zimmer, Exponential integrators for semi-linear parabolic problems with linear constraints, in Progress in Differential-Algebraic Equations II, Springer, Cham, 2020, pp. 137-164, https://doi.org/10.1007/978-3-030-53905-4_5. · Zbl 1454.65101
[5] D. Braess, Finite Elements-Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd ed., Cambridge University Press, New York, 2007. · Zbl 1118.65117
[6] J. H. Bramble, J. E. Pasciak, and O. Steinbach, On the stability of the \(L^2\) projection in \(H^1(\Omega)\), Math. Comp., 71 (2002), pp. 147-156, https://doi.org/10.1090/S0025-5718-01-01314-X. · Zbl 0989.65122
[7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer-Verlag, New York, 2008, https://doi.org/10.1007/978-0-387-75934-0. · Zbl 1135.65042
[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[9] C. Carstensen and R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal., 36 (1999), pp. 1571-1587, https://doi.org/10.1137/S003614299732334X. · Zbl 0938.65124
[10] G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein, and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian, Semigroup Forum, 77 (2008), pp. 101-108, https://doi.org/10.1007/s00233-008-9068-2. · Zbl 1149.35313
[11] G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial Differential Equations and Calculus of Variations, S. Hildebrandt and R. Leis, eds., Springer, Berlin, 1988, pp. 142-155, https://doi.org/10.1007/BFb0082865. · Zbl 0663.65114
[12] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numer., 22 (2013), pp. 289-396, https://doi.org/10.1017/S0962492913000056. · Zbl 1296.65156
[13] D. Elfverson, V. Ginting, and P. Henning, On multiscale methods in Petrov-Galerkin formulation, Numer. Math., 131 (2015), pp. 643-682, https://doi.org/10.1007/s00211-015-0703-z. · Zbl 1330.65187
[14] C. M. Elliott and T. Ranner, Finite element analysis for a coupled bulk-surface partial differential equation, IMA J. Numer. Anal., 33 (2013), pp. 377-402, https://doi.org/10.1093/imanum/drs022. · Zbl 1271.65138
[15] K.-J. Engel and G. Fragnelli, Analyticity of semigroups generated by operators with generalized Wentzell boundary conditions, Adv. Differential Equations, 10 (2005), pp. 1301-1320. · Zbl 1108.47039
[16] C. Engwer, P. Henning, A. M\aalqvist, and D. Peterseim, Efficient implementation of the localized orthogonal decomposition method, Comput. Methods Appl. Mech. Engrg., 350 (2019), pp. 123-153, https://doi.org/10.1016/j.cma.2019.02.040. · Zbl 1441.65100
[17] J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), pp. 1309-1364, https://doi.org/10.1080/03605309308820976. · Zbl 0816.35059
[18] A. Favini, G. R. Goldstein, J. A. Goldstein, and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), pp. 1-19, https://doi.org/10.1007/s00028-002-8077-y. · Zbl 1043.35062
[19] C. A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor, A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 5685-5706, https://doi.org/10.1016/j.cma.2005.11.011. · Zbl 1126.76029
[20] D. Gallistl and D. Peterseim, Computation of quasi-local effective diffusion tensors and connections to the mathematical theory of homogenization, Multiscale Model. Simul., 15 (2017), pp. 1530-1552, https://doi.org/10.1137/16M1088533. · Zbl 1397.74185
[21] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. · Zbl 1042.35002
[22] G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), pp. 457-480. · Zbl 1107.35010
[23] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985. · Zbl 0695.35060
[24] F. Hellman, A. M\aalqvist, and S. Wang, Numerical upscaling for heterogeneous materials in fractured domains, ESAIM Math. Model. Numer. Anal., to appear, https://doi.org/10.1051/m2an/2020061. · Zbl 1491.65138
[25] P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner, A diffuse modeling approach for embedded interfaces in linear elasticity, GAMM-Mitt., 43 (2020), e202000001, https://doi.org/10.1002/gamm.202000001. · Zbl 1541.74006
[26] D. Hipp, A Unified Error Analysis for Spatial Discretizations of Wave-Type Equations with Applications to Dynamic Boundary Conditions, Ph.D. thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2017, https://publikationen.bibliothek.kit.edu/1000070952.
[27] R. Hiptmair, C. Jerez-Hanckes, and S. Mao, Extension by zero in discrete trace spaces: Inverse estimates, Math. Comp., 84 (2015), pp. 2589-2615, https://doi.org/10.1090/mcom/2955. · Zbl 1321.65179
[28] R. Kornhuber, D. Peterseim, and H. Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition, Math. Comp., 87 (2018), pp. 2765-2774, https://doi.org/10.1090/mcom/3302. · Zbl 1397.65233
[29] R. Kornhuber and H. Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition, Multiscale Model. Simul., 14 (2016), pp. 1017-1036, https://doi.org/10.1137/15M1028510. · Zbl 1352.65521
[30] B. Kovács and C. Lubich, Numerical analysis of parabolic problems with dynamic boundary conditions, IMA J. Numer. Anal., 37 (2017), pp. 1-39, https://doi.org/10.1093/imanum/drw015. · Zbl 1433.65216
[31] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution, European Mathematical Society Publishing House, Zürich, 2006. · Zbl 1095.34004
[32] R. Lamour, R. März, and C. Tischendorf, Differential-Algebraic Equations: A Projector Based Analysis, Springer-Verlag, Berlin, 2013, https://doi.org/10.1007/978-3-642-27555-5. · Zbl 1276.65045
[33] I. Lasiecka, Mathematical Control Theory of Coupled PDEs, CBMS-NSF Reg. Conf. Ser. Appl. Math. 75, SIAM, Philadelphia, 2002, https://doi.org/10.1137/1.9780898717099. · Zbl 1032.93002
[34] P. C. Lichtner, Critique of dual continuum formulations of multicomponent reactive transport in fractured porous media, in Dynamics of Fluids in Fractured Rock, American Geophysical Union (AGU), Washington, DC, 2000, pp. 281-298, https://doi.org/10.1029/GM122p0281.
[35] M. Liero, Passing from bulk to bulk-surface evolution in the Allen-Cahn equation, Nonlinear Differ. Equ. Appl., 20 (2013), pp. 919-942, https://doi.org/10.1007/s00030-012-0189-7. · Zbl 1268.35073
[36] M. K. Lipinski, A posteriori Fehlerschätzer für Sattelpunktsformulierungen nicht-homogener Randwertprobleme, Ph.D. thesis, Ruhr Universität Bochum, Bochum, Germany, 2004. · Zbl 1192.65143
[37] A. M\aalqvist and A. Persson, A generalized finite element method for linear thermoelasticity, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1145-1171, https://doi.org/10.1051/m2an/2016054. · Zbl 1397.74191
[38] A. M\aalqvist and A. Persson, Multiscale techniques for parabolic equations, Numer. Math., 138 (2018), pp. 191-217, https://doi.org/10.1007/s00211-017-0905-7. · Zbl 1401.65109
[39] A. M\aalqvist and D. Peterseim, Localization of elliptic multiscale problems, Math. Comp., 83 (2014), pp. 2583-2603. · Zbl 1301.65123
[40] A. M\aalqvist and D. Peterseim, Computation of eigenvalues by numerical upscaling, Numer. Math., 130 (2015), pp. 337-361, https://doi.org/10.1007/s00211-014-0665-6. · Zbl 1333.65127
[41] A. Moiola, Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems, Ph.D. thesis, ETH Zürich, 2011.
[42] D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Springer, Cham, 2016, pp. 341-367. · Zbl 1357.65265
[43] D. Peterseim and S. Sauter, Finite elements for elliptic problems with highly varying, nonperiodic diffusion matrix, Multiscale Model. Simul., 10 (2012), pp. 665-695, https://doi.org/10.1137/10081839X. · Zbl 1264.65195
[44] D. Peterseim, D. Varga, and B. Verfürth, From domain decomposition to homogenization theory, in Domain Decomposition Methods in Science and Engineering XXV, Lecture Notes Comput. Sci. Eng. 134, Springer, Cham, 2020, pp. 29-40. · Zbl 1509.65144
[45] S. Sauter and C. Schwab, Boundary Element Methods, Springer-Verlag, Berlin, 2011. · Zbl 1215.65183
[46] J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive type, Comm. Partial Differential Equations, 33 (2008), pp. 561-612, https://doi.org/10.1080/03605300801970960. · Zbl 1168.35375
[47] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Stuttgart, 1996. · Zbl 0853.65108
[48] V. Vrábel’ and M. Slodička, Nonlinear parabolic equation with a dynamical boundary condition of diffusive type, Appl. Math. Comput., 222 (2013), pp. 372-380, https://doi.org/10.1016/j.amc.2013.07.057. · Zbl 1330.35220
[49] J. Wiedemann, Simulation of Parabolic Problems with Dynamic Boundary Conditions, Master’s thesis, University of Augsburg, Augsburg, Germany, 2019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.