×

Convergence of the Rothe method applied to operator DAEs arising in elastodynamics. (English) Zbl 07174723

Summary: The dynamics of elastic media, constrained by Dirichlet boundary conditions, can be modeled as an operator DAE of semi-explicit structure. These models include flexible multibody systems as well as applications with boundary control. In order to use adaptive methods in space, we analyze the properties of the Rothe method concerning stability and convergence for this kind of systems. We consider a regularization of the operator DAE and prove the weak convergence of the implicit Euler scheme. Furthermore, we consider perturbations in the semi-discrete systems which correspond to additional errors such as spatial discretization errors.

MSC:

65J08 Numerical solutions to abstract evolution equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

References:

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Elsevier, Amsterdam, 2003.; Adams, R. A.; Fournier, J. J. F., Sobolev Spaces (2003) · Zbl 1098.46001
[2] R. Altmann, Index reduction for operator differential-algebraic equations in elastodynamics, ZAMM Z. Angew. Math. Mech. 93 (2013), no. 9, 648-664.; Altmann, R., Index reduction for operator differential-algebraic equations in elastodynamics, ZAMM Z. Angew. Math. Mech., 93, 9, 648-664 (2013) · Zbl 1321.74007
[3] R. Altmann, Regularization and simulation of constrained partial differential equations Ph.D. thesis, Technische Universität Berlin, 2015.; Altmann, R., Regularization and simulation of constrained partial differential equations (2015) · Zbl 1327.76090
[4] R. Altmann and J. Heiland, Finite element decomposition and minimal extension for flow equations, ESAIM Math. Model. Numer. Anal. 49 (2015), no. 5, 1489-1509.; Altmann, R.; Heiland, J., Finite element decomposition and minimal extension for flow equations, ESAIM Math. Model. Numer. Anal., 49, 5, 1489-1509 (2015) · Zbl 1327.76090
[5] M. Arnold, Zur Theorie und zur numerischen Lösung von Anfangswertproblemen für differentiell-algebraische Systeme von höherem Index, VDI, Düsseldorf, 1998.; Arnold, M., Zur Theorie und zur numerischen Lösung von Anfangswertproblemen für differentiell-algebraische Systeme von höherem Index (1998)
[6] M. Arnold and O. Brüls, Convergence of the generalized-α scheme for constrained mechanical systems, Multibody Syst. Dyn. 18 (2007), no. 2, 185-202.; Arnold, M.; Brüls, O., Convergence of the generalized-α scheme for constrained mechanical systems, Multibody Syst. Dyn., 18, 2, 185-202 (2007) · Zbl 1121.70003
[7] O. A. Bauchau, Flexible Multibody Dynamics, Solid Mech. Appl., Springer, Cham, 2010.; Bauchau, O. A., Flexible Multibody Dynamics (2010) · Zbl 1298.65200
[8] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008.; Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (2008) · Zbl 1135.65042
[9] S. L. Campbell and W. Marszalek, The index of an infinite-dimensional implicit system, Math. Comput. Model. Dyn. Syst. 5 (1999), no. 1, 18-42.; Campbell, S. L.; Marszalek, W., The index of an infinite-dimensional implicit system, Math. Comput. Model. Dyn. Syst., 5, 1, 18-42 (1999) · Zbl 0922.35040
[10] A. J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys. 135 (1997), no. 2, 115-125.; Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 135, 2, 115-125 (1997) · Zbl 0899.76283
[11] J. Chung and G. M. Hulbert, A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method, J. Appl. Mech. 60 (1993), no. 2, 371-375.; Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method, J. Appl. Mech., 60, 2, 371-375 (1993) · Zbl 0775.73337
[12] P. G. Ciarlet, Mathematical Elasticity. Vol. 1, North-Holland, Amsterdam, 1988.; Ciarlet, P. G., Mathematical Elasticity. Vol. 1 (1988) · Zbl 0648.73014
[13] R. W. Clough and J. Penzien, Dynamics of Structures, 3rd ed., McGraw-Hill, London, 2003.; Clough, R. W.; Penzien, J., Dynamics of Structures (2003) · Zbl 0357.73068
[14] E. Emmrich, Discrete versions of Gronwall’s lemma and their application to the numerical analysis of parabolic problems, Preprint 637, Technische Universität Berlin, Germany, 1999.; Emmrich, E., Discrete versions of Gronwall’s lemma and their application to the numerical analysis of parabolic problems (1999)
[15] E. Emmrich, Variable time-step ϑ-scheme for nonlinear evolution equations governed by a monotone operator, Calcolo 46 (2009), no. 3, 187-210.; Emmrich, E., Variable time-step ϑ-scheme for nonlinear evolution equations governed by a monotone operator, Calcolo, 46, 3, 187-210 (2009) · Zbl 1177.65075
[16] E. Emmrich, D. Šiška and M. Thalhammer, On a full discretisation for nonlinear second-order evolution equations with monotone damping: Construction, convergence, and error estimates, Found. Comput. Math. 15 (2015), no. 6, 1653-1701.; Emmrich, E.; Šiška, D.; Thalhammer, M., On a full discretisation for nonlinear second-order evolution equations with monotone damping: Construction, convergence, and error estimates, Found. Comput. Math., 15, 6, 1653-1701 (2015) · Zbl 1334.65094
[17] E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order, Found. Comput. Math. 10 (2010), no. 2, 171-190.; Emmrich, E.; Thalhammer, M., Convergence of a time discretisation for doubly nonlinear evolution equations of second order, Found. Comput. Math., 10, 2, 171-190 (2010) · Zbl 1192.65059
[18] E. Emmrich and M. Thalhammer, Stiffly accurate Runge-Kutta methods for nonlinear evolution problems governed by a monotone operator, Math. Comp. 79 (2010), no. 270, 785-806.; Emmrich, E.; Thalhammer, M., Stiffly accurate Runge-Kutta methods for nonlinear evolution problems governed by a monotone operator, Math. Comp., 79, 270, 785-806 (2010) · Zbl 1202.65067
[19] E. Emmrich and M. Thalhammer, Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation, J. Differential Equations 251 (2011), no. 1, 82-118.; Emmrich, E.; Thalhammer, M., Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation, J. Differential Equations, 251, 1, 82-118 (2011) · Zbl 1220.47141
[20] L. C. Evans, Partial Differential Equations, 2nd ed., American Mathematical Society, Providence, 1998.; Evans, L. C., Partial Differential Equations (1998) · Zbl 0902.35002
[21] H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferential-Gleichungen, Akademie Verlag, Berlin, 1974.; Gajewski, H.; Gröger, K.; Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferential-Gleichungen (1974) · Zbl 0289.47029
[22] M. Géradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach, John Wiley, Chichester, 2001.; Géradin, M.; Cardona, A., Flexible Multibody Dynamics: A Finite Element Approach (2001) · Zbl 0709.73079
[23] M. Günther, A PDAE model for interconnected linear RLC networks, Math. Comp. Model. Dyn. 7 (2001), no. 2, 189-203.; Günther, M., A PDAE model for interconnected linear RLC networks, Math. Comp. Model. Dyn., 7, 2, 189-203 (2001) · Zbl 1045.93005
[24] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, Mineola, 1987.; Hughes, T. J. R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987) · Zbl 0634.73056
[25] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution, European Mathematical Society, Zürich, 2006.; Kunkel, P.; Mehrmann, V., Differential-Algebraic Equations: Analysis and Numerical Solution (2006) · Zbl 1095.34004
[26] R. Lamour, R. März and C. Tischendorf, Differential-Algebraic Equations: A Projector Based Analysis, Springer, Heidelberg, 2013.; Lamour, R.; März, R.; Tischendorf, C., Differential-Algebraic Equations: A Projector Based Analysis (2013) · Zbl 1276.65045
[27] J. Lennart and M. Matthes, Numerical analysis of nonlinear PDAEs: A coupled systems approach and its application to circuit simulation, preprint (2013), https://www.mathematik.hu-berlin.de/de/forschung/pub/pub-2013.; Lennart, J.; Matthes, M., Numerical analysis of nonlinear PDAEs: A coupled systems approach and its application to circuit simulation (2013)
[28] P. Lötstedt and L. R. Petzold, Numerical solution of nonlinear differential equations with algebraic constraints. I. Convergence results for backward differentiation formulas, Math. Comp. 46 (1986), no. 174, 491-516.; Lötstedt, P.; Petzold, L. R., Numerical solution of nonlinear differential equations with algebraic constraints. I. Convergence results for backward differentiation formulas, Math. Comp., 46, 174, 491-516 (1986) · Zbl 0601.65060
[29] C. Lunk and B. Simeon, The reverse method of lines in flexible multibody dynamics, Multibody Dynamics, Comput. Methods Appl. Sci. 12, Springer, Berlin (2009), 95-118.; Lunk, C.; Simeon, B., The reverse method of lines in flexible multibody dynamics, Multibody Dynamics, 95-118 (2009) · Zbl 1303.70014
[30] V. Mehrmann, Index concepts for differential-algebraic equations, Encyclopedia of Applied and Computational Mathematics, Springer, Berlin (2015), 676-681.; Mehrmann, V., Index concepts for differential-algebraic equations, Encyclopedia of Applied and Computational Mathematics, 676-681 (2015)
[31] N. M. Newmark, A method of computation for structural dynamics, Proc. Amer. Soc. Civil Eng. 3 (1959), .; Newmark, N. M., A method of computation for structural dynamics, Proc. Amer. Soc. Civil Eng., 3 (1959) · Zbl 0812.68011
[32] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, 2nd ed., Springer, New York, 2004.; Renardy, M.; Rogers, R. C., An Introduction to Partial Differential Equations (2004) · Zbl 1072.35001
[33] R. Riaza, Differential-Algebraic Systems, World Scientific, Hackensack, 2008.; Riaza, R., Differential-Algebraic Systems (2008) · Zbl 1184.34004
[34] T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2005.; Roubíček, T., Nonlinear Partial Differential Equations with Applications (2005) · Zbl 1087.35002
[35] W. Schiehlen, N. Guse and R. Seifried, Multibody dynamics in computational mechanics and engineering applications, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 41-43, 5509-5522.; Schiehlen, W.; Guse, N.; Seifried, R., Multibody dynamics in computational mechanics and engineering applications, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5509-5522 (2006) · Zbl 1119.70007
[36] A. A. Shabana, Flexible multibody dynamics: Review of past and recent developments, Multibody Syst. Dyn. 1 (1997), no. 2, 189-222.; Shabana, A. A., Flexible multibody dynamics: Review of past and recent developments, Multibody Syst. Dyn., 1, 2, 189-222 (1997) · Zbl 0893.70008
[37] B. Simeon, DAEs and PDEs in elastic multibody systems, Numer. Algorithms 19 (1998), 235-246.; Simeon, B., DAEs and PDEs in elastic multibody systems, Numer. Algorithms, 19, 235-246 (1998) · Zbl 0927.70004
[38] B. Simeon, Numerische Simulation Gekoppelter Systeme von Partiellen und Differential-algebraischen Gleichungen der Mehrkörperdynamik, VDI, Düsseldorf, 2000.; Simeon, B., Numerische Simulation Gekoppelter Systeme von Partiellen und Differential-algebraischen Gleichungen der Mehrkörperdynamik (2000)
[39] B. Simeon, On Lagrange multipliers in flexible multibody dynamics, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 50-51, 6993-7005.; Simeon, B., On Lagrange multipliers in flexible multibody dynamics, Comput. Methods Appl. Mech. Engrg., 195, 50-51, 6993-7005 (2006) · Zbl 1120.74517
[40] B. Simeon, Computational Flexible Multibody Dynamics. A Differential-Algebraic Approach, Differ.-Algebr. Equ. Forum, Springer, Berlin, 2013.; Simeon, B., Computational Flexible Multibody Dynamics. A Differential-Algebraic Approach (2013) · Zbl 1279.70002
[41] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam, 1977.; Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis (1977) · Zbl 0383.35057
[42] C. Tischendorf, Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis, Habilitationsschrift, Humboldt-Universität zu Berlin, 2003.; Tischendorf, C., Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis (2003) · Zbl 1045.94545
[43] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen, Vieweg & Teubner, Wiesbaden, 2009.; Tröltzsch, F., Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen (2009) · Zbl 1320.49001
[44] E. L. Wilson, Three Dimensional Static and Dynamic Analysis of Structures: A Physical Approach with Emphasis on Earthquake Engineering, Computers and Structures, Berkeley, 1998.; Wilson, E. L., Three Dimensional Static and Dynamic Analysis of Structures: A Physical Approach with Emphasis on Earthquake Engineering (1998)
[45] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.; Wloka, J., Partial Differential Equations (1987) · Zbl 0623.35006
[46] E. Zeidler, Nonlinear Functional Analysis and its Applications IIa: Linear Monotone Operators, Springer, New York, 1990.; Zeidler, E., Nonlinear Functional Analysis and its Applications IIa: Linear Monotone Operators (1990) · Zbl 0684.47028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.