×

Bohl-Perron type stability theorems for linear singular difference equations. (English) Zbl 1406.39022

The paper deals with the linear singular difference equation \[ E_n y(n+1) = A_n y(n) + q_n, \qquad n = n_0,n_0 + 1,\dots, \] where \(q_n \in \mathbb R^d,\) \(E_n\) and \(A_n\) are \(d \times d\)-matrices, \({\mathrm{rank}} (E_n) = r = {\mathrm{const}} < d\) for all \(n \geq n_0.\)
Using a projector-based approach the authors define the Cauchy operator associated with the corresponding homogeneous system and give definitions of stability and exponential stability.
The authors prove three Bohi-Perron type theorems about the relation between the exponential stability of homogeneous system and the boundedness of solutions of the considered system.

MSC:

39A30 Stability theory for difference equations
39A06 Linear difference equations
39A22 Growth, boundedness, comparison of solutions to difference equations
Full Text: DOI

References:

[1] Agarwal, R.P. Monographs and Textbooks in Pure and Applied Mathematics: Difference Equations and Inequalities: Theory, Methods and Applications, 2nd edn., vol. 228. Marcel Dekker, New York (2000) · Zbl 1180.39026
[2] Anh, PK; Du, NH; Loi, LC, Singular difference equations: an overview, Vietnam J. Math., 35, 339-372, (2007) · Zbl 1148.39009
[3] Anh, PK; Hoang, DS, Stability of a class of singular difference equations, Int. J. Differ. Equ., 1, 181-193, (2006) · Zbl 1146.39005
[4] Anh, PK; Yen, HTN, On the solvability of initial-value problems for nonlinear implicit difference equations, Adv. Differ. Equ., 2004, 195-200, (2004) · Zbl 1086.39019 · doi:10.1155/S1687183904402015
[5] Anh, PK; Yen, HTN, Floquet theorem for linear implicit nonautonomous difference systems, J. Math. Anal. Appl., 321, 921-929, (2006) · Zbl 1100.39017 · doi:10.1016/j.jmaa.2005.08.075
[6] Aulbach, B; Minh, NV, The concept of spectral dichotomy for linear difference equations II, J. Differ. Equ. Appl., 2, 251-262, (1996) · Zbl 0880.39009 · doi:10.1080/10236199608808060
[7] Berezansky, L; Braverman, E, On exponential dichotomy, Bohl-Perron type theorems and stability of difference equations, J. Math. Anal. Appl., 304, 511-530, (2005) · Zbl 1068.39004 · doi:10.1016/j.jmaa.2004.09.042
[8] Berger, T, Bohl exponent for time-varying linear differential-algebraic equations, Int. J. Control, 85, 1433-1451, (2012) · Zbl 1253.93113 · doi:10.1080/00207179.2012.688872
[9] Braverman, E; Karabash, IM, Bohl-Perron type stability theorems for linear difference equations with infinite delay, J. Differ. Equ. Appl., 18, 909-939, (2012) · Zbl 1252.39017 · doi:10.1080/10236198.2010.531276
[10] Brüll, T, Existence and uniqueness of solutions of linear variable coefficient discrete-time descriptor systems, Linear Algebra Appl., 431, 247-265, (2009) · Zbl 1161.93015 · doi:10.1016/j.laa.2009.02.019
[11] Chyan, C-J; Du, NH; Linh, VH, On data-dependence of exponential stability and the stability radii for linear time-varying differential-algebraic systems, J. Differ. Equ., 245, 2078-2102, (2008) · Zbl 1162.34004 · doi:10.1016/j.jde.2008.07.016
[12] Daleckiı̆, J. L., Kreı̆n, M. G.: Stability of Solutions of Differential Equations in Banach Spaces. Translated from the Russian by J. Smith. American Mathematical Society, Providence (1974) · Zbl 0286.34094
[13] Du, NH; Lien, DT; Linh, VH, On complex stability radii for implicit discrete time systems, Vietnam J. Math., 31, 475-488, (2003) · Zbl 1096.93030
[14] Du, NH; Linh, VH; Nga, NTT, On stability and Bohl exponent of linear singular systems of difference equations with variable coefficients, J. Differ. Equ. Appl., 22, 1350-1377, (2016) · Zbl 1360.39010 · doi:10.1080/10236198.2016.1198341
[15] Elaydi, S.: An Introduction to Difference Equations, 3rd edn. Springer, New York (2005) · Zbl 1071.39001
[16] Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solution. EMS Publishing House, Zürich (2006) · Zbl 1095.34004 · doi:10.4171/017
[17] Mehrmann, V; Thuan, DD, Stability analysis of implicit difference equations under restricted perturbations, SIAM J. Matrix Anal. Appl., 36, 178-202, (2015) · Zbl 1315.65105 · doi:10.1137/140984191
[18] Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis. Springer, Berlin-Heidelberg (2013) · Zbl 1276.65045 · doi:10.1007/978-3-642-27555-5
[19] Loi, LC; Du, NH; Anh, PK, On linear implicit non-autonomous systems of difference equations, J. Differ. Equ. Appl., 8, 1085-1105, (2002) · Zbl 1011.39016 · doi:10.1080/1023619021000053962
[20] Luenberger, DG, Dynamic equations in descriptor form, IEEE Trans. Autom. Control, 22, 312-321, (1977) · Zbl 0354.93007 · doi:10.1109/TAC.1977.1101502
[21] Luenberger, DG, Control of linear dynamic market systems, J. Econ. Dyn. Control, 10, 339-351, (1986) · Zbl 0649.90029 · doi:10.1016/0165-1889(86)90001-1
[22] Luenberger, DG; Arbel, A, Singular dynamic Leontief systems, Econometrica, 45, 991-995, (1977) · Zbl 0368.90029 · doi:10.2307/1912686
[23] Pituk, M, A criterion for the exponential stability of linear difference equations, Appl. Math. Lett., 17, 779-783, (2004) · Zbl 1068.39019 · doi:10.1016/j.aml.2004.06.005
[24] Rodjanadid, B; Sanh, NV; Ha, NT; Du, NH, Stability radii for implicit difference equations, Asian-Eur J. Math., 2, 95-115, (2009) · Zbl 1180.39026 · doi:10.1142/S1793557109000091
[25] Rudin, W.: Functional Analysis, 2nd edn. McGraw Hill, New York (1991) · Zbl 0867.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.