×

Simulation of multibody systems with servo constraints through optimal control. (English) Zbl 1386.70014

Summary: We consider mechanical systems where the dynamics are partially constrained to prescribed trajectories. An example for such a system is a building crane with a load and the requirement that the load moves on a certain path.
Enforcing this condition directly in form of a servo constraint leads to differential-algebraic equations (DAEs) of arbitrarily high index. Typically, the model equations are of index 5, which already poses high regularity conditions. If we relax the servo constraints and consider the system from an optimal control point of view, the strong regularity conditions vanish, and the solution can be obtained by standard techniques.
By means of the well-known \(n\)-car example and an overhead crane, the theoretical and expected numerical difficulties of the direct DAE and the alternative modeling approach are illustrated. We show how the formulation of the problem in an optimal control context works and address the solvability of the optimal control system. We discuss that the problematic DAE behavior is still inherent in the optimal control system and show how its evidences depend on the regularization parameters of the optimization.

MSC:

70E55 Dynamics of multibody systems
49N90 Applications of optimal control and differential games

References:

[1] Altmann, R., Betsch, P., Yang, Y.: Index reduction by minimal extension for the inverse dynamics simulation of cranes. Multibody Syst. Dyn. 36(3), 295-321 (2016) · Zbl 1369.70046 · doi:10.1007/s11044-015-9471-x
[2] Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia (1995) · Zbl 0843.65054 · doi:10.1137/1.9781611971231
[3] Betsch, P.; Altmann, R.; Yang, Y.; Font-Llagunes, J. M. (ed.), Numerical integration of underactuated mechanical systems subjected to mixed holonomic and servo constraints, No. 42, 1-18 (2016), Berlin · doi:10.1007/978-3-319-30614-8_1
[4] Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1996) · Zbl 0844.65058
[5] Blajer, W., Kołodziejczyk, K.: A geometric approach to solving problems of control constraints: Theory and a DAE framework. Multibody Syst. Dyn. 11(4), 343-364 (2004) · Zbl 1066.70018 · doi:10.1023/B:MUBO.0000040800.40045.51
[6] Blajer, W., Kołodziejczyk, K.: Improved DAE formulation for inverse dynamics simulation of cranes. Multibody Syst. Dyn. 25(2), 131-143 (2011) · doi:10.1007/s11044-010-9227-6
[7] Blajer, W.: Index of differential-algebraic equations governing the dynamics of constrained mechanical systems. Appl. Math. Model. 16(2), 70-77 (1992) · Zbl 0757.93037 · doi:10.1016/0307-904X(92)90083-F
[8] Blajer, W.: Dynamics and control of mechanical systems in partly specified motion. J. Franklin Inst. B 334(3), 407-426 (1997) · Zbl 0943.70018 · doi:10.1016/S0016-0032(96)00091-9
[9] Blajer, W.: The use of servo-constraints in the inverse dynamics analysis of underactuated multibody systems. J. Comput. Nonlinear Dyn. 9(4), 1-11 (2014)
[10] Betsch, P.; Uhlar, S.; Quasem, M., On the incorporation of servo constraints into a rotationless formulation of flexible multibody dynamics, Milano, Italy, 25-28 June
[11] Clark, K.D., Petzold, L.R.: Numerical solution of boundary value problems in differential-algebraic systems. SIAM J. Sci. Stat. Comput. 10(5), 915-936 (1989) · Zbl 0677.65089 · doi:10.1137/0910053
[12] Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems: Introductory theory and examples. Int. J. Control 61(6), 1327-1361 (1995) · Zbl 0838.93022 · doi:10.1080/00207179508921959
[13] Gerdts, M.: Direct shooting method for the numerical solution of higher-index DAE optimal control problems. J. Optim. Theory Appl. 117(2), 267-294 (2003) · Zbl 1033.65046 · doi:10.1023/A:1023679622905
[14] Gear, C.W., Gupta, G.K., Leimkuhler, B.: Automatic integration of Euler-Lagrange equations with constraints. J. Comput. Appl. Math. 12-13, 77-90 (1985) · Zbl 0576.65072 · doi:10.1016/0377-0427(85)90008-1
[15] Heiland, J.: Decoupling and optimization of differential-algebraic equations with application in flow control. PhD thesis, TU, Berlin (2014)
[16] Heiland, J.: holo-servo-opt—A Python module for the solution of multi-body systems with holonomic and servo constraints via optimal control (2015). https://github.com/highlando/holo-servo-opt · Zbl 1156.49018
[17] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996) · Zbl 0859.65067 · doi:10.1007/978-3-642-05221-7
[18] Isidori, A.: Nonlinear Control Systems, 2nd edn. Springer, Berlin (1989) · Zbl 0693.93046 · doi:10.1007/978-3-662-02581-9
[19] Kirgetov, V.I.: The motion of controlled mechanical systems with prescribed constraints (servoconstraints). J. Appl. Math. Mech. 31, 465-477 (1967) · Zbl 0201.57003 · doi:10.1016/0021-8928(67)90029-9
[20] Kunkel, P., Mehrmann, V.: Index reduction for differential-algebraic equations by minimal extension. Z. Angew. Math. Mech. 84(9), 579-597 (2004) · Zbl 1070.34006 · doi:10.1002/zamm.200310127
[21] Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. European Mathematical Society Publishing House, Zürich (2006) · Zbl 1095.34004 · doi:10.4171/017
[22] Kunkel, P., Mehrmann, V.: Optimal control for unstructured nonlinear differential-algebraic equations of arbitrary index. Math. Control Signals Syst. 20(3), 227-269 (2008) · Zbl 1156.49018 · doi:10.1007/s00498-008-0032-1
[23] Kunkel, P., Mehrmann, V.: Formal adjoints of linear DAE operators and their role in optimal control. Electron. J. Linear Algebra 22, 672-693 (2011) · Zbl 1226.49030 · doi:10.13001/1081-3810.1466
[24] Lamour, R.: A shooting method for fully implicit index-2 differential algebraic equations. SIAM J. Sci. Comput. 18(1), 94-114 (1997) · Zbl 0868.65048 · doi:10.1137/S1064827595287274
[25] Locatelli, A.: Optimal Control. An Introduction. Birkhäuser, Basel (2001) · Zbl 1096.49500 · doi:10.1007/978-3-0348-8328-3
[26] Nachbagauer, K., Oberpeilsteiner, S., Sherif, K., Steiner, W.: The use of the adjoint method for solving typical optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 10(6), 061011 (2015) · doi:10.1115/1.4028417
[27] Seifried, R., Blajer, W.: Analysis of servo-constraint problems for underactuated multibody systems. Mech. Sci. 4(1), 113-129 (2013) · doi:10.5194/ms-4-113-2013
[28] Sontag, E.D.: Mathematical Control Theory. Deterministic Finite Dimensional Systems. Springer, New York (1998) · Zbl 0945.93001
[29] Wan, F.Y.M.: Introduction to the Calculus of Variations and Its Applications. Chapman & Hall, New York (1995) · Zbl 0843.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.