×

PDAEs in refined electrical network modeling. (English) Zbl 1382.65282

Summary: Modeling with partial differential-algebraic equations (PDAEs) is a natural and universal approach valid for various applications with coupled subsystems. This contribution summarizes the state of such models in the simulation of electric circuits; that is, we place known facts and techniques into an overall context. In fact, we mainly discuss the modeling and analysis aspects of several important settings. In the modeling context, we embed the network equations into the context of Maxwell’s equations and address the three main types of coupling: modeling with subsystems of the same type, refined models, and multiphysics. In the analysis context, we address the existence of solutions for these complex systems as well as structural properties as the DAE index (after spatial semidiscretization). For the numerical simulations, we give results for the cosimulation technique (also referred to as dynamic iteration), which is a standard method for coupled systems.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35R10 Partial functional-differential equations
35K05 Heat equation
35L20 Initial-boundary value problems for second-order hyperbolic equations

Software:

RODAS
Full Text: DOI

References:

[1] G. Alì, {\it PDAE models of integrated circuits}, J. Math. Comput. Model., 51 (2010), pp. 915-926, . · Zbl 1193.35214
[2] G. Alì, A. Bartel, M. Culpo, M. Günther, and S. Schöps, {\it Dynamic iteration schemes for PDAEs}, in COMSON-Handbook, M. Günther, ed., Springer, Berlin, 2015, pp. 103-156.
[3] G. Alì, A. Bartel, and M. Günther, {\it Parabolic differential-algebraic models in electrical network design}, Multiscale Model. Simul., 4 (2005), pp. 813-838, . · Zbl 1108.35136
[4] G. Alì, A. Bartel, and M. Günther, {\it Existence and uniqueness for an elliptic PDAE model of integrated circuits}, SIAM J. Appl. Math., 70 (2010), pp. 1587-1610, . · Zbl 1202.35314
[5] G. Alì, A. Bartel, M. Günther, and C. Tischendorf, {\it Elliptic partial differential-algebraic multiphysics models in electrical network design}, Math. Models Methods Appl. Sci., 13 (2003), pp. 1261-1278. · Zbl 1046.94519
[6] G. Alì, A. Bartel, and N. Rotundo, {\it An existence result for index-\(2\) PDAE system arising in semiconductor modeling}, Springer, Berlin, 2012, pp. 46-51. · Zbl 1246.78022
[7] G. Alì, A. Bartel, and N. Rotundo, {\it Index-2 elliptic partial differential-algebraic models for circuits and devices}, J. Math. Anal. Appl., 423 (2015), pp. 1348-1369. · Zbl 1330.35004
[8] G. Alì and N. Rotundo, {\it An existence result for elliptic partial differential-algebraic equations arising in semiconductor modeling}, Nonlinear Anal., 72 (2010), pp. 4666-4681. · Zbl 1189.35320
[9] M. Arnold and M. Günther, {\it Preconditioned dynamic iteration for coupled differential-algebraic systems}, BIT, 41 (2001), pp. 1-25. · Zbl 0986.65076
[10] M. Arnold and A. Heckmann, {\it From multibody dynamics to multidisciplinary applications}, in Multibody Dynamics. Computational Methods and Applications, J. C. G. Orden, J. M. Goicolea, and J. Cuadrado, eds., Springer-Verlag, Dordrecht, The Netherlands, 2007, pp. 273-294. · Zbl 1323.70052
[11] A. Bartel, {\it Partial Differential-Algebraic Models in Chip Design–Thermal and Semiconductor Problems}, Ph.D. thesis, TU Munich, VDI-Verlag, Düsseldorf, 2004.
[12] A. Bartel, S. Baumanns, and S. Schöps, {\it Structural analysis of electrical circuits including magnetoquasistatic devices}, Appl. Numer. Math., 61 (2011), pp. 1257-1270. · Zbl 1237.78041
[13] A. Bartel, M. Brunk, M. Günther, and S. Schöps, {\it Dynamic iteration for coupled problems of electric circuits and distributed devices}, SIAM J. Sci. Comput., 35 (2013), pp. B315-B335, . · Zbl 1266.65121
[14] A. Bartel, M. Brunk, and S. Schöps, {\it On the convergence rate of dynamic iteration for coupled problems with multiple subsystems}, J. Comput. Appl. Math., 262 (2014), pp. 14-24. · Zbl 1301.65086
[15] O. Bíró and K. Preis, {\it On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents}, IEEE Trans. Magn., 25 (1989), pp. 3145-3159, .
[16] O. Bíró and A. Valli, {\it The Coulomb gauged vector potential formulation for the eddy-current problem in general geometry: Well-posedness and numerical approximation}, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1890-1904, . · Zbl 1173.78300
[17] M. Bodestedt and C. Tischendorf, {\it PDAE models of integrated circuits and index analysis}, Math. Comput. Model. Dyn. Syst., 13 (2007), pp. 1-17. · Zbl 1123.78009
[18] J. Büttner and B. Simeon, {\it Numerical treatment of material equations with yield surfaces}, in Deformations and Failure of Metallic Continua, K. Hutter and H. Baaser, eds., Lecture Notes in Appl. Comput. Mech. 10, Springer-Verlag, Berlin, 2003, pp. 273-294. · Zbl 1026.74002
[19] M. Culpo, {\it Numerical Algorithms for System Level Electro-Thermal Simulation}, Ph.D. thesis, BU Wuppertal, Universitätsbibliothek Wuppertal, , 2009. · Zbl 1196.65006
[20] M. Culpo and C. de Falco, {\it Dynamical iteration schemes for coupled simulation in nanoelectronics}, Proc. Appl. Math. Mech., 8 (2008), pp. 10065-10068, . · Zbl 1395.94381
[21] H. De Gersem, I. Munteanu, and T. Weiland, {\it Construction of differential material matrices for the orthogonal finite integration technique with linear materials}, IEEE Trans. Magn., 44 (2008), pp. 710-713.
[22] H. De Gersem and T. Weiland, {\it Field-circuit coupling for time-harmonic models discretized by the finite integration technique}, IEEE Trans. Magn., 40 (2004), pp. 1334-1337.
[23] G. Engl, {\it The modeling and numerical simulation of gas flow networks}, Numer. Math., 72 (1996), pp. 349-366, . · Zbl 0918.76046
[24] D. Estévez Schwarz and C. Tischendorf, {\it Structural analysis of electric circuits and consequences for MNA}, Internat. J. Circuit Theory Appl., 28 (2000), pp. 131-162. · Zbl 1054.94529
[25] K. Fukahori, {\it Computer Simulation of Monolithic Circuit Performance in the Presence of Electro-Thermal Interactions}, Ph.D. thesis, University of California, Berkeley, 1977.
[26] H. Grabinski, {\it Theorie und Simulation von Leitbahnen. Signalverhalten von Leitungssystemen in der Mikroelektronik}, Springer, Berlin, 1991.
[27] T. Grasser and S. Selberherr, {\it Fully coupled electrothermal mixed-mode device simulation of SiGe HBT circuits}, IEEE Trans. Electron Devices, 48 (2001), pp. 1421-1427, .
[28] E. Griepentrog and R. März, {\it Differential-Algebraic Equations and Their Numerical Treatment}, Teubner, Leipzig, 1986. · Zbl 0629.65080
[29] M. Günther, {\it Partielle differential-algebraische Systeme in der numerischen Zeitbereichsanalyse elektrischer Schaltungen}, VDI-Verlag, Düsseldorf, 2001.
[30] M. Günther and U. Feldmann, {\it CAD-based electric-circuit modeling in industry I: Mathematical structure and index of network equations}, Surveys Math. Indust., 8 (1999), pp. 97-129. · Zbl 0923.65039
[31] M. Günther and Y. Wagner, {\it Index concepts for linear mixed systems of differential-algebraic and hyperbolic-type equations}, SIAM J. Sci. Comput., 22 (2000), pp. 1610-1629, . · Zbl 0981.65110
[32] E. Hairer and G. Wanner, {\it Solving ordinary differential equation: II. Stiff and differential-algebraic problems}, 2nd revised ed., Springer, New York, 2002. · Zbl 0729.65051
[33] H. A. Haus and J. R. Melcher, {\it Electromagnetic Fields and Energy}, Prentice-Hall, Upper Saddle River, NJ, 1989.
[34] P. Igic, P. Mawby, M. Towers, and S. Batcup, {\it Dynamic electro-thermal physically based compact models of the power devices for device and circuit simulations}, in Proceedings of the 17th Annual IEEE Symposium on Semiconductor Thermal Measurement and Management, 2001, IEEE, pp. 35-42, .
[36] Z. Jackiewicz and M. Kwapisz, {\it Convergence of waveform relaxation methods for differential-algebraic systems}, SIAM J. Numer. Anal., 33 (1996), pp. 2303-2317, . · Zbl 0889.34064
[37] L. Jansen and C. Tischendorf, {\it A unified (P)DAE modeling approach for flow networks}, in Progress in Differential-Algebraic Equations, Differ.-Algebr. Equ. Forum, Springer, Heidelberg, 2014, pp. 127-151. · Zbl 1321.94144
[38] R. Lamour, R. März, and C. Tischendorf, {\it Differential-Algebraic Equations: A Projector Based Analysis}, Differential-Algebraic Equations Forum, Springer, Berlin, 2013. · Zbl 1276.65045
[39] E. Lelarasmee, {\it The Waveform Relaxation Method for Time Domain Analysis of Large Scale Integrated Circuits: Theory and Applications}, Ph.D. thesis, University of California, Berkeley, 1982.
[40] E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, {\it The waveform relaxation method for time domain analysis of large scale integrated circuits}, IEEE Trans. Computer-Aided Design Integrated Circuits Syst., 1 (1982), pp. 131-145.
[41] P. Markowich, C. Ringhofer, and C. Schmeiser, {\it Semiconductor Equations}, Springer, New York, 1990. · Zbl 0765.35001
[42] M. Matthes, {\it Numerical Analysis of Nonlinear Partial Differential Algebraic Equations: A Coupled and an Abstract Systems Approach}, Ph.D. thesis, Logos Verlag, Berlin, 2012.
[43] A. Quarteroni, S. Ragni, and A. Veneziani, {\it Coupling between lumped and distributed models for blood flow problems}, Comput. Vis. Sci., 4 (2001), pp. 111-124. · Zbl 1097.76615
[44] K. Reinschke and P. Schwarz, {\it Verfahren zur Rechnergestützen Analyse linearer Netzwerke}, Akademie Verlag, Berlin, 1976. · Zbl 0325.94015
[45] P. Rentrop and G. Steinebach, {\it Model and numerical techniques for the alarm system of river Rhine}, Surveys Math. Indust., 6 (1997), pp. 245-265. · Zbl 0872.92017
[46] R. Riaza, {\it DAEs in circuit modelling: A survey}, in Surveys in Differential-Algebraic Equations I, Differential Algebraic Equations Forum, Springer, Heidelberg, 2013, pp. 97-136. · Zbl 1322.94123
[47] S. Schöps, {\it Multiscale Modeling and Multirate Time-Integration of Field/Circuit Coupled Problems}, VDI-Verlag, Düsseldorf, 2011.
[48] S. Schöps, A. Bartel, H. De Gersem, and M. Günther, {\it DAE-index and convergence analysis of lumped electric circuits refined by \(3\)-d MQS conductor models}, in Scientific Computing in Electrical Engineering-SCEE 2008, Springer, Berlin, 2009, pp. 341-350.
[49] S. Schöps, A. Bartel, and M. Günther, {\it An optimal p-refinement strategy for dynamic iteration of ordinary and differential algebraic equations}, Proc. Appl. Math. Mech., 13 (2013), pp. 549-552, .
[50] S. Schöps, H. De Gersem, and T. Weiland, {\it Winding functions in transient magnetoquasistatic field-circuit coupled simulations}, COMPEL, 32 (2013), pp. 2063-2083, . · Zbl 1358.78012
[51] S. Selberherr, {\it Analysis and Simulation of Semiconductor Devices}, Springer, New York, 1984.
[52] B. Simeon, C. Führer, and P. Rentrop, {\it Differential-algebraic equations in vehicle system dynamics}, Surveys Math. Indust., 1 (1991), pp. 1-37. · Zbl 0727.65064
[53] C. Tischendorf, {\it Topological index calculation of differential-algebraic equations in circuit simulation}, Surveys Math. Indust., 8 (1999), pp. 187-199. · Zbl 1085.94513
[54] T. Weiland, {\it A discretization model for the solution of Maxwell’s equations for six-component fields}, AEU, 31 (1977), pp. 116-120.
[55] T. Weiland, {\it Time domain electromagnetic field computation with finite difference methods}, Internat. J. Numer. Model. Electronic Networks Devices Fields, 9 (1996), pp. 295-319.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.