×

Bistability of buoyancy-driven exchange flows in vertical tubes. (English) Zbl 1415.86043

Summary: Buoyancy-driven exchange flows are common to a variety of natural and engineering systems, ranging from persistently active volcanoes to counterflows in oceanic straits. Laboratory experiments of exchange flows have been used as surrogates to elucidate the basic features of such flows. The resulting data have been analysed and interpreted mostly through core-annular flow solutions, the most common flow configuration at finite viscosity contrasts. These models have been successful in fitting experimental data, but less effective at explaining the variability observed in natural systems. In this paper, we demonstrate that some of the variability observed in laboratory experiments and natural systems is a consequence of the inherent bistability of core-annular flow. Using a core-annular solution to the classical problem of buoyancy-driven exchange flows in vertical tubes, we identify two mathematically valid solutions at steady state: a solution with fast flow in a thin core and a solution with relatively slow flow in a thick core. The theoretical existence of two solutions, however, does not necessarily imply that the system is bistable in the sense that flow switching may occur. Through direct numerical simulations, we confirm the hypothesis that core-annular flow in vertical tubes is inherently bistable. Our simulations suggest that the bistability of core-annular flow is linked to the boundary conditions of the domain, which implies that is not possible to predict the realized flow field from the material parameters of the fluids and the tube geometry alone. Our finding that buoyancy-driven exchange flows are inherently bistable systems is consistent with previous experimental data, but is in contrast to the underlying hypothesis of previous analytical models that the solution is unique and can be identified by maximizing the flux or extremizing the dissipation in the system. Our results have important implications for data interpretation by analytical models and may also have interesting ramifications for understanding volcanic degassing.

MSC:

86A60 Geological problems
76T99 Multiphase and multicomponent flows
76E05 Parallel shear flows in hydrodynamic stability
76E17 Interfacial stability and instability in hydrodynamic stability

References:

[1] Arakeri, J. H.; Avila, F. E.; Dada, J. M.; Tovar, R. O., Convection in a long vertical tube due to unstable stratification - A new type of turbulent flow?, Curr. Sci., 79, 859-866, (2000)
[2] Bai, R.; Chen, K.; Joseph, D. D., Lubricated pipelining: stability of core – annular flow. Part 5. Experiments and comparison with theory, J. Fluid Mech., 240, 97-132, (1992) · doi:10.1017/S0022112092000041
[3] Barnea, D., A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations, Intl J. Multiphase Flow, 13, 1-12, (1987) · doi:10.1016/0301-9322(87)90002-4
[4] Barnea, D.; Taitel, Y., Stability of annular flow, Intl Commun. Heat Mass Transfer, 12, 611-621, (1985) · doi:10.1016/0735-1933(85)90084-3
[5] Beckett, F. M.; Mader, H. M.; Phillips, J. C.; Rust, A. C.; Witham, F., An experimental study of low-Reynolds-number exchange flow of two Newtonian fluids in a vertical pipe, J. Fluid Mech., 682, 652-670, (2011) · Zbl 1241.76005 · doi:10.1017/jfm.2011.264
[6] Brauner, N.1998Liquid – liquid two-phase flow. In Modelling and Experimentation in Two-phase Flow, pp. 221-279. Springer.
[7] Burton, M. R.; Mader, H. M.; Polacci, M., The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes, Earth Planet. Sci. Lett., 264, 1, 46-60, (2007) · doi:10.1016/j.epsl.2007.08.028
[8] Chen, K.; Bai, R.; Joseph, D. D., Lubricated pipelining. Part 3. Stability of core – annular flow in vertical pipes, J. Fluid Mech., 214, 251-286, (1990) · Zbl 0709.76671 · doi:10.1017/S0022112090000131
[9] Chen, K.; Joseph, D. D., Lubricated pipelining: stability of core – annular flow. Part 4. Ginzburg-Landau equations, J. Fluid Mech., 227, 587-615, (1991) · Zbl 0729.76505 · doi:10.1017/S0022112091000265
[10] Dalziel, S. B., Maximal exchange in channels with nonrectangular cross sections, J. Phys. Oceanogr., 22, 1188-1206, (1992) · doi:10.1175/1520-0485(1992)022<1188:MEICWN>2.0.CO;2
[11] Francis, P.; Oppenheimer, C.; Stevenson, D., Endogenous growth of persistently active volcanoes, Nature, 366, 554-557, (1993) · doi:10.1038/366554a0
[12] Frigaard, I. A.; Scherzer, O., Uniaxial exchange flows of two bingham fluids in a cylindrical duct, IMA J. Appl. Maths, 61, 237-266, (1998) · Zbl 0928.76010 · doi:10.1093/imamat/61.3.237
[13] Goyal, N.; Meiburg, E., Miscible displacements in Hele-Shaw cells: two-dimensional base states and their linear stability, J. Fluid Mech., 558, 329-355, (2006) · Zbl 1156.76382 · doi:10.1017/S0022112006009992
[14] Hickox, C. E., Instability due to viscosity and density stratification in axisymmetric pipe flow, Phys. Fluids, 14, 251-262, (1971) · Zbl 0216.52703 · doi:10.1063/1.1693422
[15] Hu, H. H.; Joseph, D. D., Lubricated pipelining: stability of core – annular flow. Part 2, J. Fluid Mech., 205, 359-396, (1989) · doi:10.1017/S0022112089002077
[16] Hu, H. H.; Patankar, N., Non-axisymmetric instability of core – annular flow, J. Fluid Mech., 290, 213-224, (1995) · Zbl 0843.76021 · doi:10.1017/S0022112095002485
[17] Huppert, H. E.; Hallworth, M. A., Bi-directional flows in constrained systems, J. Fluid Mech., 578, 95-112, (2007) · Zbl 1175.76051 · doi:10.1017/S0022112007004661
[18] Joseph, D. D.; Bai, R.; Chen, K. P.; Renardy, Y. Y., Core-annular flows, Annu. Rev. Fluid Mech., 29, 65-90, (1997) · doi:10.1146/annurev.fluid.29.1.65
[19] Joseph, D. D.; Renardy, M.; Renardy, Y., Instability of the flow of two immiscible liquids with different viscosities in a pipe, J. Fluid Mech., 141, 309-317, (1984) · Zbl 0562.76103 · doi:10.1017/S0022112084000860
[20] Joseph, D. D.; Renardy, Y. Y., Fundamentals of Two-fluid Dynamics, (1992), Springer · Zbl 0784.76003
[21] Kazahaya, K.; Shinohara, H.; Saito, G., Excessive degassing of Izu-Oshima volcano: magma convection in a conduit, Bull. Volcanol., 56, 207-216, (1994) · doi:10.1007/BF00279605
[22] Landman, M. J., Non-unique holdup and pressure drop in two-phase stratified inclined pipe flow, Intl J. Multiphase Flow, 17, 377-394, (1991) · Zbl 1134.76590 · doi:10.1016/0301-9322(91)90006-O
[23] Mcbirney, A. R.; Murase, T., Rheological properties of magmas, Annu. Rev. Earth Planet. Sci., 12, 337-357, (1984) · doi:10.1146/annurev.ea.12.050184.002005
[24] Meiburg, E.; Vanaparthy, S. H.; Payr, M. D.; Wilhelm, D., Density-driven instabilities of variable-viscosity miscible fluids in a capillary tube, Ann. N.Y. Acad. Sci., 1027, 383-402, (2004) · doi:10.1196/annals.1324.032
[25] Métrich, N.; Wallace, P. J., Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions, Rev. Mineral. Geochem., 69, 363-402, (2008) · doi:10.2138/rmg.2008.69.10
[26] Palma, J. L.; Blake, S.; Calder, E. S., Constraints on the rates of degassing and convection in basaltic open vent volcanoes, Geochem. Geophys. Geosyst., 12, (2011) · doi:10.1029/2011GC003715
[27] Petitjeans, P.; Maxworthy, T., Miscible displacements in capillary tubes. Part 1. experiments, J. Fluid Mech., 326, 37-56, (1996) · doi:10.1017/S0022112096008233
[28] Picchi, D.; Poesio, P., Stability of multiple solutions in inclined gas/shear-thinning fluid stratified pipe flow, Intl J. Multiphase Flow, 84, 176-187, (2016) · doi:10.1016/j.ijmultiphaseflow.2016.03.002
[29] Preziosi, L.; Chen, K.; Joseph, D. D., Lubricated pipelining: stability of core – annular flow, J. Fluid Mech., 201, 323-356, (1989) · Zbl 0683.76039 · doi:10.1017/S0022112089000960
[30] Qin, Z.; Delaney, K.; Riaz, A.; Balaras, E., Topology preserving advection of implicit interfaces on Cartesian grids, J. Comput. Phys., 290, 219-238, (2015) · Zbl 1349.76641 · doi:10.1016/j.jcp.2015.02.029
[31] Qin, Z.; Suckale, J., Direct numerical simulations of gas – solid – liquid interactions in dilute fluids, Intl J. Multiphase Flow, 96, 34-47, (2017) · doi:10.1016/j.ijmultiphaseflow.2017.07.008
[32] Ray, E.; Bunton, P.; Pojman, J. A., Determination of the diffusion coefficient between corn syrup and distilled water using a digital camera, Am. J. Phys., 75, 903, (2007) · doi:10.1119/1.2752819
[33] Renardy, Y. Y., Snakes and corkscrews in core – annular down-flow of two fluids, J. Fluid Mech., 340, 297-317, (1997) · Zbl 0888.76029 · doi:10.1017/S0022112097005351
[34] Russell, T. W. F.; Charles, M. E., The effect of the less viscous liquid in the laminar flow of two immiscible liquids, Can. J. Chem. Engng, 37, 18-24, (1959) · doi:10.1002/cjce.5450370105
[35] Scoffoni, J.; Lajeunesse, E.; Homsy, G. M., Interface instabilities during displacements of two miscible fluids in a vertical pipe, Phys. Fluids, 13, 553-554, (2001) · Zbl 1184.76487 · doi:10.1063/1.1343907
[36] Sethian, J. A., Level Set Methods and Fast Marching Methods, (1996), Cambridge University Press · Zbl 0852.65055
[37] Stevenson, D. S.; Blake, S., Modelling the dynamics and thermodynamics of volcanic degassing, Bull. Volcanol., 60, 307-317, (1998) · doi:10.1007/s004450050234
[38] Suckale, J.; Hager, B. H.; Elkins-Tanton, L. T.; Nave, J.-C., It takes three to tango: 2. Bubble dynamics in basaltic volcanoes and ramifications for modeling normal Strombolian activity, J. Geophys. Res., 115, (2010)
[39] Suckale, J.; Nave, J.-C.; Hager, B. H., It takes three to tango: 1. Simulating buoyancy-driven flow in the presence of large viscosity contrasts, J. Geophys. Res., 115, (2010)
[40] Suckale, J.; Sethian, J. A.; Yu, J.; Elkins-Tanton, L. T., Crystals stirred up: 1. Direct numerical simulations of crystal settling in nondilute magmatic suspensions, J. Geophys. Res., 117, (2012)
[41] Tan, C. T.; Homsy, G. M., Stability of miscible displacements in porous media: rectilinear flow, Phys. Fluids, 29, 3549-3556, (1986) · Zbl 0608.76087 · doi:10.1063/1.865832
[42] Ullmann, A.; Brauner, N., Closure relations for the shear stress in two-fluid models for core – annular flow, Multiphase Sci. Technol., 16, 4, 355-387, (2004) · doi:10.1615/MultScienTechn.v16.i4.50
[43] Ullmann, A.; Zamir, M.; Ludmer, Z.; Brauner, N., Stratified laminar countercurrent flow of two liquid phases in inclined tubes, Intl J. Multiphase Flow, 29, 1583-1604, (2003) · Zbl 1136.76666 · doi:10.1016/S0301-9322(03)00144-7
[44] Vanaparthy, S. H.; Meiburg, E.; Wilhelm, D., Density-driven instabilities of miscible fluids in a capillary tube: linear stability analysis, J. Fluid Mech., 497, 99-121, (2003) · Zbl 1074.76025 · doi:10.1017/S0022112003006499
[45] Vergniolle, S. & Mangan, M.2000Hawaiian and Strombolian eruptions. In Encyclopedia of Volcanoes, pp. 447-461. Elsevier.
[46] Witham, F., Conduit convection, magma mixing, and melt inclusion trends at persistently degassing volcanoes, Earth Planet. Sci. Lett., 301, 345-352, (2011) · doi:10.1016/j.epsl.2010.11.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.