×

Observer-based output consensus of a class of heterogeneous multi-agent systems with unmatched disturbances. (English) Zbl 1510.93036

Summary: In this paper, the output consensus of a class of linear heterogeneous multi-agent systems with unmatched disturbances is considered. Firstly, based on the relative output information among neighboring agents, we propose an asymptotic sliding-mode based consensus control scheme, under which, the output consensus error can converge to zero by removing the disturbances from output channels. Secondly, in order to reach the consensus goal, we design a novel high-order unknown input observer for each agent. It can estimate not only each agent’s states and disturbances, but also the disturbances’ high-order derivatives, which are required in the control scheme aforementioned above. The observer-based consensus control laws and the convergence analysis of the consensus error dynamics are given. Finally, a simulation example is provided to verify the validity of our methods.

MSC:

93A16 Multi-agent systems
93B07 Observability
93D20 Asymptotic stability in control theory
Full Text: DOI

References:

[1] Ren, W.; Beard, R., Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Trans Autom Control, 50, 5, 655-661 (2005) · Zbl 1365.93302
[2] Su, H.; Wang, X.; Lin, Z., Flocking of multi-agents with a virtual leader, IEEE Trans Autom Control, 54, 2, 293-307 (2009) · Zbl 1367.37059
[3] Wang, Q.; Wu, M.; Huang, Y.; Wang, L., Formation control of heterogeneous multi-robot systems, 17th IFAC World Congress, 6596-6601 (2008)
[4] Wang, L.; Xiao, F., Finite-time consensus problems for networks of dynamic agents, IEEE Trans Autom Control, 55, 4, 950-955 (2010) · Zbl 1368.93391
[5] Lai, J.; Chen, S.; Lu, X., Tracking consensus of nonlinear MASs with asymmetric communication delays in noisy environments, Commun Nonlinear Sci Numer Simul, 19, 2334-2344 (2014) · Zbl 1457.93013
[6] Li, Z.; Duan, Z.; Lewis, F., Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties, Automatica, 50, 3, 883-889 (2014) · Zbl 1298.93026
[7] Hong, Y.; L. Gao, J. H., Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 42, 7, 1177-1182 (2006) · Zbl 1117.93300
[8] Hong, Y.; Chen, G.; Bushnell, L., Distributed observers design for leader-following control of multi-agent networks, Automatica, 44, 3, 846-850 (2008) · Zbl 1283.93019
[9] Hu, J.; Geng, J.; Zhu, H., An observer-based consensus tracking control and application to event-triggered tracking, Commun Nonlinear Sci Numer Simul, 20, 559-570 (2015) · Zbl 1303.93012
[10] Wen, G.; Duan, Z.; Chen, G.; Yu, W., Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies, IEEE Trans Circuits Syst I, 61, 2, 499-511 (2014) · Zbl 1468.93037
[11] Wang, G.; Shen, Y., Second-order cluster consensus of multi-agent dynamical systems with impulsive effects, Commun Nonlinear Sci Numer Simulat, 19, 3220-3228 (2014) · Zbl 1510.93028
[12] Zheng, Y.; Ma, J.; Wang, L., Consensus of hybrid multi-agent systems, IEEE Trans Neural Netw Learn Syst (2017)
[13] Lin, X.; Zheng, Y., Finite-time consensus of switched multiagent systems, IEEE Trans Syst Man Cybern, 47, 7, 1535-1545 (2017)
[14] Zheng, Y.; Wang, L., Consensus of switched multiagent systems, IEEE Trans Circuits Syst II, 63, 3, 314-318 (2016)
[15] Murguia, C.; Fey, R. H.B.; Nijmeijer, H., Network synchronization by dynamic diffusive coupling, Int J Bifurc Chaos, 23, 4, 1-12 (2013) · Zbl 1270.34151
[16] Murguia, C.; Fey, R. H.B.; Nijmeijer, H., Synchronization of identical linear systems and diffusive time-delayed couplings, IEEE Trans Circ Syst, 61, 6, 1801-1814 (2014)
[17] Murguia, C.; Fey, R. H.B.; Nijmeijer, H., Network synchronization of time-delayed coupled nonlinear systems using predictor-based diffusive dynamic couplings, Chaos, 25 (2015) · Zbl 1345.34099
[18] Murguia, C.; Fey, R. H.B.; Nijmeijer, H., Network synchronization using invariant-manifold-based diffusive dynamic couplings with time-delay, Automatica, 57, 34-44 (2015) · Zbl 1330.93013
[19] Wieland, P.; Sepulchre, R.; Allgower, F., An internal model principle is necessary and sufficient for linear output synchronization, Automatica, 47, 1068-1074 (2011) · Zbl 1233.93011
[20] Lunze, J., Synchronization of heterogeneous agents, IEEE Trans Autom Control, 57, 11, 2885-2890 (2012) · Zbl 1369.93037
[21] Kim, H.; Shim, H.; Seo, J. H., Output consensus of heterogeneous uncertain linear multi-agent systems, IEEE Trans Autom Control, 56, 1, 200-206 (2011) · Zbl 1368.93378
[22] Liu, H.; De Persis, C.; Cao, M., Robust decentralized output regulation with single or multiple reference signals for uncertain heterogeneous systems, Int J Robust Nonlinear Control, 25, 1399-1422 (2015) · Zbl 1323.93010
[23] Yang, T.; Saberi, A.; Stoorvogel, A. A.; Grip, H. F.r., Output synchronization for heterogeneous networks of introspective right-invertible agents, Int J Robust Nonlinear Control, 24, 13, 1821-1844 (2014) · Zbl 1301.93015
[24] Bidram, A.; Lewis, F. L.; Davoudi, A., Synchronization of nonlinear heterogeneous cooperative systems using input-output feedback linearization, Automatica, 50, 10, 2578-2585 (2014) · Zbl 1301.93007
[25] Lunze, J., A method for designing the communication structure of networked controllers, Int J Control, 86, 9, 1489-1502 (2013) · Zbl 1278.93028
[26] Yang, J.; Zolotas, A.; Chen, W. H.; Michail, K.; Li, S. H., Robust control of nonlinear maglev suspension system with mismatched uncertainties via DOBC approach, ISA Trans, 50, 389-396 (2011)
[27] Liu, H. X.; Li, S. H., Speed control for PMSM servo system using predictive function control and extended state observer, IEEE Trans Ind Electron, 59, 2, 1171-1183 (2012)
[28] Abdel-Rady, Y.; Mohamed, I., Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer, IEEE Trans Ind Electron, 54, 4, 1981-1988 (2007)
[29] Lee, J. H.; Allaire, P. E.; Tao, G.; Zhang, X. R., Integral sliding-mode control of a magnetically suspended balance beam: analysis, simulation, and experiment, IEEE/ASME Trans Mechatron, 6, 3, 338-346 (2001)
[30] Yang, J.; Su, J. Y.; Li, S. H.; Yu, X. H., High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding mode approach, IEEE Trans Ind Inf, 10, 1, 604-614 (2014)
[31] Su, Y.; Huang, J., Cooperative output regulation of linear multi-agent systems, IEEE Trans Autom Control, 57, 4, 1062-1066 (2012) · Zbl 1369.93051
[32] Su, Y.; Huang, J., Cooperative robust output regulation of a class of heterogeneous linear uncertain multi-agent systems, Int J Robust Nonlinear Control, 24, 17, 2819-2839 (2014) · Zbl 1305.93020
[33] Li, S. B.; Feng, G.; Luo, X. Y.; Guan, X. P., Output consensus of heterogeneous linear discrete-time multiagent systems with structural uncertainties, IEEE Trans Cybern, 45, 12, 2868-2879 (2015)
[34] Li, Z. K.; Chen, M. Z.Q.; Ding, Z. T., Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs, Automatica, 68, 179-183 (2016) · Zbl 1334.93013
[35] Seyboth, G. S.; Ren, W.; Allgower, F., Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization, Automatica, 68, 132-139 (2016) · Zbl 1334.93020
[36] Zhang, F.; Trentelman, H. L.; Scherpen, J. M.A., Dynamic feedback synchronization of lure networks via incremental sector boundedness, IEEE Trans Autom Control, 61, 9, 2579-2584 (2016) · Zbl 1359.93199
[37] Zhang, F.; Trentelman, H. L.; Scherpen, J. M.A., Fully distributed robust synchronization of networked lure systems with incremental nonlinearities, Automatica, 50, 2515-2526 (2014) · Zbl 1301.93059
[38] Peymani, E.; Grip, H. F.; Saberi, A.; Wang, X.; Fossen, T., \(h_∞\) Almost output synchronization for heterogeneous networks of introspective agents under external disturbances, Automatica, 50, 4, 1026-1036 (2014) · Zbl 1298.93031
[39] Corless, M.; Tu, J., State and input estimation for a class of uncertain systems, Automatica, 34, 16, 757-764 (1998) · Zbl 0932.93008
[40] Li, S. H.; Yang, J.; Chen, W. H.; Chen, X. S., Generalized extended state observer based control for systems with mismatched uncertainties, IEEE Trans Indus Electr, 59, 12, 4792-4802 (2012)
[41] Zhang, J. C.; Zhu, F. L., Output control of MIMO system with unmatched disturbance based on high-order unknown input observer, Int J Control Autom Syst, 15, 2, 575-584 (2017)
[42] Isidori, A., Nonlinear control systems (1996), SpringerVerlag: SpringerVerlag London
[43] Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A., Sliding mode control and observation (2014), Birkhauser: Birkhauser New York, NY, USA
[44] Liu, Y.; Lunze, J., Leader-follower synchronisation of autonomous agents with external disturbances, Int J Control, 87, 9, 1914-1925 (2014) · Zbl 1317.93096
[45] Lunze, J., Self-organising disturbance attenuation for synchronised agents with individual dynamics, Int J Control, 88, 3, 469-483 (2015) · Zbl 1328.93113
[46] Mondal, S.; Su, R.; Xie, L. H., Heterogeneous consensus of higher-order multi-agent systems with mismatched uncertainties using sliding mode control, Int J Robust Nonlinear Control (2016)
[47] Trentelman, H. L.; Takaba, K.; Monshizadeh, N., Robust synchronization of uncertain linear multi-agent systems, IEEE Trans Autom Control, 58, 6, 1511-1523 (2013) · Zbl 1369.93053
[48] Jafarian, M.; De Persis, C., Formation control using binary information, Automatica, 53, 125-135 (2015) · Zbl 1371.93006
[49] Zhang, W.; Su, H. S.; Zhu, F. L.; Azar, G. M., Unknown input observer design for one-sided Lipschitz nonlinear systems, Nonlinear Dyn, 79, 1469-1479 (2015) · Zbl 1345.93104
[50] Zhang, J.; Zhu, F., On the observer matching condition and unknown input observer design based on the system left-invertibility concept, Trans Inst Measure Control (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.