×

Tracking control of wheeled mobile robots with communication delay and data loss. (English) Zbl 1401.93148

Summary: This paper considers the tracking control problem of a wheeled mobile robot under situation of communication delay and consecutive data packet dropouts in the feedback channel. A tracking controller in discrete-time domain for the case of ideal network condition is first derived, and then the networked predictive controller as well as two algorithms for dealing with communication delay and consecutive data packet dropouts are proposed. Simulation and experimental results verify the realizability and effectiveness of the proposed algorithms.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93-04 Software, source code, etc. for problems pertaining to systems and control theory
93C55 Discrete-time control/observation systems
93B52 Feedback control
Full Text: DOI

References:

[1] Kim, S; Oh, H; Suk, J; etal., Coordinated trajectory planning for efficient communication relay using multiple uavs, Control Engineering Practice, 29, 42-49, (2014) · doi:10.1016/j.conengprac.2014.04.003
[2] Rakkiyappan, R; Kaviarasan, B; Park, J H, Leader-following consensus for networked multiteleoperator systems via stochastic sampled-data control, Neurocomputing, 164, 272-280, (2015) · doi:10.1016/j.neucom.2015.02.060
[3] Postoyan, R; Bragagnolo, M C; Galbrun, E; etal., Event-triggered tracking control of unicycle mobile robots, Automatica, 52, 302-308, (2015) · Zbl 1309.93104 · doi:10.1016/j.automatica.2014.12.009
[4] Mahmoud, M S; Xia, Y, The interaction between control and computing theories: new approaches, International Journal of Automation and Computing, 14, 254-274, (2017) · doi:10.1007/s11633-017-1070-2
[5] Zhang, W; Branicky, M S; Phillips, S M, Stability of networked control systems, IEEE Control Systems, 21, 84-99, (2001) · doi:10.1109/37.898794
[6] Hespanha, J P; Naghshtabrizi, P; Xu, Y, A survey of recent results in networked control systems, Proceedings of the IEEE, 95, 138-162, (2007) · doi:10.1109/JPROC.2006.887288
[7] Liu, G P; Mu, J; Rees, D, Networked predictive control of systems with random communication delay, (2004)
[8] Sun, J; Chen, J; Gan, M G, A necessary and sufficient stability criterion for networked predictive control systems, Science China Technological Sciences, 59, 2-8, (2016) · doi:10.1007/s11431-015-5973-2
[9] Wang, Z; Sun, J; Chen, J, A new polytopic approximation method for networked systems with time-varying delay, IEEE Transactions on Circuits and Systems II: Express Briefs, 63, 843-847, (2016) · doi:10.1109/TCSII.2016.2534858
[10] Chen, J; Meng, S; Sun, J, Stability analysis of networked control systems with aperiodic sampling and time-varying delay, IEEE Transactions on Cybernetics, 47, 2312-2320, (2017) · doi:10.1109/TCYB.2016.2628864
[11] Liu, G P, Design and analysis of networked non-linear predictive control systems, IET Control Theory & Applications, 9, 1740-1745, (2015) · doi:10.1049/iet-cta.2014.1198
[12] Zhao, Y B; Liu, G P; Rees, D, Packet-based deadband control for Internet-based networked control systems, IEEE Transactions on Control Systems Technology, 18, 1057-1067, (2010) · doi:10.1109/TCST.2009.2033118
[13] Hu, W; Liu, G P; Rees, D, Networked predictive control over the Internet using round-trip delay measurement, IEEE Transactions on Instrumentation and Measurement, 57, 2231-2241, (2008) · doi:10.1109/TIM.2008.919978
[14] Song, H; Liu, G P; Yu, L, Networked predictive control of uncertain systems with multiple feedback channels, IEEE Transactions on Industrial Electronics, 60, 5228-5238, (2013) · doi:10.1109/TIE.2012.2225398
[15] Huang, J; Wen, C; Wang, W; etal., Adaptive output feedback tracking control of a nonholonomic mobile robot, Automatica, 50, 821-831, (2014) · Zbl 1298.93239 · doi:10.1016/j.automatica.2013.12.036
[16] Jiang, Z P; Nijmeijer, H, Tracking control of mobile robots: A case study in backstepping, Automatica, 33, 1393-1399, (1997) · Zbl 0882.93057 · doi:10.1016/S0005-1098(97)00055-1
[17] Rao, A M; Ramji, K; Rao, B S K S S; etal., Navigation of non-holonomic mobile robot using neuro-fuzzy logic with integrated safe boundary algorithm, International Journal of Automation and Computing, 14, 285-294, (2017) · doi:10.1007/s11633-016-1042-y
[18] Huang, J; Wen, C; Wang, W; etal., Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance, Systems & Control Letters, 62, 234-241, (2013) · Zbl 1261.93068 · doi:10.1016/j.sysconle.2012.11.020
[19] Fierro, R; Lewis, F L, Control of a nonholonomic mobile robot: backstepping kinematics into dynamics, decision and control, Proceedings of the 34th IEEE Conference on IEEE, 4, 3805-3810, (1995)
[20] Fukao, T; Nakagawa, H; Adachi, N, Adaptive tracking control of a nonholonomic mobile robot, IEEE Transactions on Robotics and Automation, 16, 609-615, (2000) · doi:10.1109/70.880812
[21] Miao, Z; Wang, Y, Adaptive control for simultaneous stabilization and tracking of unicycle mobile robots, Asian Journal of Control, 17, 2277-2288, (2015) · Zbl 1338.93325 · doi:10.1002/asjc.1142
[22] Wai, R J; Lin, Y W, Adaptive moving-target tracking control of a vision-based mobile robot via a dynamic Petri recurrent fuzzy neural network, IEEE Transactions on Fuzzy Systems, 21, 688-701, (2013) · doi:10.1109/TFUZZ.2012.2227974
[23] Lai, J; Chen, S; Lu, X; etal., Formation tracking for nonlinear multi-agent systems with delays and noise disturbance, Asian Journal of Control, 17, 879-891, (2015) · Zbl 1332.93013 · doi:10.1002/asjc.937
[24] Alvarez-Aguirre, A; Velasco-Villa, M; del-Muro-Cuellar, B, Nonlinear Smith-predictor based control strategy for a unicycle mobile robot subject to transport delay, 5th international conference on electrical engineering, 102-107, (2008)
[25] Kojima, K; Oguchi, T; Alvarez-Aguirre, A; etal., Predictor-based tracking control of a mobile robot with time-delays, 167-172, (2010)
[26] Alvarez-Aguirre, A; Wouw, N; Oguchi, T; etal., Predictor-based remote tracking control of a mobile robot, IEEE Transactions on Control Systems Technology, 22, 2087-2102, (2014) · doi:10.1109/TCST.2014.2304741
[27] Panteley, E; Lefeber, E; Loria, A; etal., Exponential tracking control of a mobile car using a cascaded approach, 221-226, (1998)
[28] Jakubiak, J; Lefeber, E; Tchon, K; etal., Two observer-based tracking algorithms for a unicycle mobile robot, International Journal of Applied Mathematics and Computer Science, 12, 513-522, (2002) · Zbl 1034.93043
[29] Nešić, D; Loría, A, On uniform asymptotic stability of time-varying parameterized discretetime cascades, IEEE Transactions on Automatic Control, 49, 875-887, (2004) · Zbl 1365.93269 · doi:10.1109/TAC.2004.829645
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.