×

Synchronization of hybrid microgrids with communication latency. (English) Zbl 1395.94011

Summary: A distributed cooperative control scheme is proposed in order to implement a distributed secondary control for hybrid lossy microgrids. The designed distributed control is able to synchronize the frequency of inverse-based distributed generators (DGs) and minisynchronous generators (MSGs/SGs) to the desired state with a virtual leader DG/SG (reference value) in a distribution switching network under the existence of time-varying communication delays. The secondary control stage selects suitable frequencies of each DG/SG such that they can be synchronized at the desired set point. Using the proposed algorithm, each DG/SG only needs to communicate with its neighboring DGs/SGs intermittently even if the communication networks are local, the topology is time-varying, and the communication delays may exist. Therefore, the failure of a single DG/SG will not produce the failing down of the whole system. Sufficient conditions on the requirements for the network connectivity and the delays boundedness which guarantees the stability and synchronization of the controlled hybrid lossy microgrid power systems are presented. The feasibility of the proposed control methodology is verified by the simulation of a given lossy microgrid test system.

MSC:

94A05 Communication theory
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] Pogaku, N.; Prodanović, M.; Green, T. C., Modeling, analysis and testing of autonomous operation of an inverter-based microgrid, IEEE Transactions on Power Electronics, 22, 2, 613-625, (2007) · doi:10.1109/TPEL.2006.890003
[2] Lai, J. G.; Zhou, H.; Hu, W. S.; Zhou, D. G.; Zhong, L., Smart demand response based on smart homes
[3] Farhangi, H., The path of the smart grid, IEEE Power and Energy Magazine, 8, 1, 18-28, (2010) · doi:10.1109/MPE.2009.934876
[4] Guerrero, J. M.; Vasquez, J. C.; Matas, J.; de Vicuña, L. G.; Castilla, M., Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization, IEEE Transactions on Industrial Electronics, 58, 1, 158-172, (2011) · doi:10.1109/tie.2010.2066534
[5] Zhong, Q.-C., Robust droop controller for accurate proportional load sharing among inverters operated in parallel, IEEE Transactions on Industrial Electronics, 60, 4, 1281-1290, (2013) · doi:10.1109/tie.2011.2146221
[6] Mohamed, Y. A.-R. I.; El-Saadany, E. F., Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids, IEEE Transactions on Power Electronics, 23, 6, 2806-2816, (2008) · doi:10.1109/TPEL.2008.2005100
[7] Savaghebi, M.; Jalilian, A.; Vasquez, J. C.; Guerrero, J. M., Secondary control for voltage quality enhancement in microgrids, IEEE Transactions on Smart Grid, 3, 4, 1893-1902, (2012) · doi:10.1109/TSG.2012.2205281
[8] Savaghebi, M.; Jalilian, A.; Vasquez, J. C.; Guerrero, J. M., Secondary control scheme for voltage unbalance compensation in an Islanded droop-controlled microgrid, IEEE Transactions on Smart Grid, 3, 2, 797-807, (2012) · doi:10.1109/tsg.2011.2181432
[9] Schiffer, J.; Ortegab, R.; Astolfic, A., Conditions for stability of droop-controlled inverter-based microgrids, Automatica, 50, 10, 2457-2469, (2014) · Zbl 1301.93145
[10] Shafiee, Q.; Stefanovic, C.; Dragicevic, T.; Popovski, P.; Vasquez, J. C.; Guerrero, J. M., Robust networked control scheme for distributed secondary control of islanded microgrids, IEEE Transactions on Industrial Electronics, 61, 10, 5363-5374, (2014) · doi:10.1109/tie.2013.2293711
[11] Bouattour, H.; Simpson-Porco, J. W.; Dörfler, F.; Bullo, F., Further results on distributed secondary control in microgrids, Proceedings of the 52nd IEEE Conference on Decision and Control (CDC ’13) · doi:10.1109/cdc.2013.6760097
[12] Vovos, P. N.; Kiprakis, A. E.; Wallace, A. R.; Harrison, G. P., Centralized and distributed voltage control: impact on distributed generation penetration, IEEE Transactions on Power Systems, 22, 1, 476-483, (2007) · doi:10.1109/tpwrs.2006.888982
[13] Tsikalakis, A. G.; Hatziargyriou, N. D., Centralized control for optimizing microgrids operation, Proceedings of the IEEE PES General Meeting: The Electrification of Transportation and the Grid of the Future · doi:10.1109/pes.2011.6039737
[14] Vaccaro, A.; Velotto, G.; Zobaa, A. F., A decentralized and cooperative architecture for optimal voltage regulation in smart grids, IEEE Transactions on Industrial Electronics, 58, 10, 4593-4602, (2011) · doi:10.1109/tie.2011.2143374
[15] Pagani, G. A.; Aiello, M., Towards decentralization: a topological investigation of the medium and low voltage grids, IEEE Transactions on Smart Grid, 2, 3, 538-547, (2011) · doi:10.1109/tsg.2011.2147810
[16] Lai, J. G.; Chen, S. H.; Lu, X. Q.; Zhou, H., Formation tracking for nonlinear mulit-agent systems with delays and noises disturbance, Asian Journal of Control, 17, 3, 1-13, (2015) · Zbl 1332.00091 · doi:10.1002/asjc.1056
[17] Lai, J.; Chen, S.; Lu, X., Tracking consensus of nonlinear MASs with asymmetric communication delays in noisy environments, Communications in Nonlinear Science and Numerical Simulation, 19, 7, 2334-2344, (2014) · Zbl 1457.93013 · doi:10.1016/j.cnsns.2013.11.010
[18] Guan, Z. H.; Liu, Z. W.; Feng, G.; Wang, Y. W., Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Transactions on Circuits and Systems. I. Regular Papers, 57, 8, 2182-2195, (2010) · Zbl 1468.93086 · doi:10.1109/tcsi.2009.2037848
[19] Liu, Z.-W.; Guan, Z.-H.; Shen, X. M.; Feng, G., Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements, IEEE Transactions on Automatic Control, 57, 10, 2639-2643, (2012) · Zbl 1369.93035 · doi:10.1109/tac.2012.2214451
[20] Lu, X.; Lu, R.; Chen, S.; Lu, J., Finite-time distributed tracking control for multi-agent systems with a virtual leader, IEEE Transactions on Circuits and Systems. I. Regular Papers, 60, 2, 352-362, (2013) · Zbl 1468.93007 · doi:10.1109/tcsi.2012.2215786
[21] Lu, X. Q.; Chen, S. H.; Lü, J. H., Finite-time tracking for double-integrator multi-agent systems with bounded control input, IET Control Theory & Applications, 7, 11, 1562-1573, (2013) · doi:10.1049/iet-cta.2013.0013
[22] Tanaka, K.; Oshiro, M.; Toma, S.; Yona, A.; Senjyu, T.; Funabashi, T.; Kim, C.-H., Decentralised control of voltage in distribution systems by distributed generators, IET Generation, Transmission and Distribution, 4, 11, 1251-1260, (2010) · doi:10.1049/iet-gtd.2010.0003
[23] Zhou, H.; Wang, Z.-H.; Liu, Z.-W.; Hu, W. S.; Liu, G. P., Containment control for multi-agent systems via impulsive algorithms without velocity measurements, IET Control Theory & Applications, 8, 17, 2033-2044, (2014) · doi:10.1049/iet-cta.2014.0084
[24] Zhao, C. H.; Topcu, U.; Li, N.; Low, S., Design and stability of load-side primary frequency control in power systems, IEEE Transactions on Automatic Control, 59, 5, 1177-1189, (2014) · Zbl 1360.90057 · doi:10.1109/tac.2014.2298140
[25] Bouattour, H.; Simpson-Porco, J. W.; Dorfler, F.; Bullo, F., Further results on distributed secondary control in microgrids, Proceedings of the IEEE 52nd Annual Conference on Decision and Control (CDC ’13) · doi:10.1109/cdc.2013.6760097
[26] Simpson-Porco, J. W.; Dörfler, F.; Bullo, F., Synchronization and power sharing for droop-controlled inverters in islanded microgrids, Automatica, 49, 9, 2603-2611, (2013) · Zbl 1364.93544 · doi:10.1016/j.automatica.2013.05.018
[27] Zhang, H.; Lewis, F. L.; Das, A., Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback, IEEE Transactions on Automatic Control, 56, 8, 1948-1952, (2011) · Zbl 1368.93265 · doi:10.1109/tac.2011.2139510
[28] Xin, H. H.; Qu, Z. H.; Seuss, J.; Maknouninejad, A., A self-organizing strategy for power flow control of photovoltaic generators in a distribution network, IEEE Transactions on Power Systems, 26, 3, 1462-1473, (2011) · doi:10.1109/tpwrs.2010.2080292
[29] Liang, H.; Choi, B. J.; Zhuang, W.; Shen, X., Stability enhancement of decentralized inverter control through wireless communications in microgrids, IEEE Transactions on Smart Grid, 4, 1, 321-331, (2013) · doi:10.1109/TSG.2012.2226064
[30] Shafiee, Q.; Guerrero, J. M.; Vasquez, J. C., Distributed secondary control for islanded microgrids-a novel approach, IEEE Transactions on Power Electronics, 29, 2, 1018-1031, (2014) · doi:10.1109/tpel.2013.2259506
[31] Schiffera, J.; Goldin, D.; Raisch, J., Synchronization of droop-controlled microgrids with distributed rotational and electronic generation, Proceedings of the IEEE 52nd Annual Conference on Decision and Control (CDC ’13) · doi:10.1109/CDC.2013.6760229
[32] Lu, X.; Austin, F.; Chen, S., Flocking in multi-agent systems with active virtual leader and time-varying delays coupling, Communications in Nonlinear Science and Numerical Simulation, 16, 2, 1014-1026, (2011) · Zbl 1221.93193 · doi:10.1016/j.cnsns.2010.05.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.