×

Control properties for second-order hyperbolic systems in anisotropic cases with applications in inhomogeneous and anisotropic elastodynamic systems. (English) Zbl 1406.35182

In the paper, the authors prove a control property for a second-order hyperbolic system in anisotropic and inhomogeneous cases with Dirichlet control. A system with variable coefficient matrices in a bounded domain in \(\mathbb{R}^n\) with \(C^2\)-boundary is considered. Using the Hilbert uniqueness method, the authors deduce the exact controllability of the corresponding control problem. The same results for linear elastodynamic systems are provided to illustrate the application of the results.

MSC:

35L51 Second-order hyperbolic systems
74E05 Inhomogeneity in solid mechanics
74E10 Anisotropy in solid mechanics
93B05 Controllability
93B07 Observability
93B52 Feedback control
Full Text: DOI

References:

[1] M. Aassila, Exact boundary controllability of a coupled system, Discrete Contin. Dyn. Syst., 6 (2000), pp. 665-672. · Zbl 1063.93502
[2] M. Aassila, Exact boundary controllability of the plate equation, Differential Integral Equations, 13 (2000), pp. 1413–1428. · Zbl 0983.93007
[3] F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., 42 (2003), pp. 871–906. · Zbl 1125.93311
[4] F. Alabau-Boussouira, P. Cannarsa, and G. Leugering, Control and stabilization of degenerate wave equations, SIAM J. Control Optim., 55 (2017), pp. 2052–2087. · Zbl 1373.35185
[5] F. Alabau and V. Komornik, Boundary observability and controllability of linear elastodynamic systems, in Optimization Methods in Partial Differential Equations (South Hadley, MA, 1996), Contemp. Math. 209, AMS, Providence, RI, 1997, pp. 1–8. · Zbl 0889.35060
[6] F. Alabau and V. Komornik, Boundary observability, controllability, and stabilization of linear elastodynamic systems, SIAM J. Control Optim., 37 (1999), pp. 521–542. · Zbl 0935.93037
[7] P. Cannarsa, G. Fragnelli, and D. Rocchetti, Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, 2 (2007), pp. 695–715. · Zbl 1140.93011
[8] P. Cannarsa, P. Martinez, and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3 (2004), pp. 607–635. · Zbl 1063.35092
[9] L. Cot, J.-P. Raymond, and J. Vancostenoble, Exact controllability of an aeroacoustic model with a Neumann and a Dirichlet boundary control, SIAM J. Control Optim., 48 (2009), pp. 1489–1518. · Zbl 1282.93051
[10] P. N. Da Silva and C. F. Vasconcellos, On the stabilization and controllability for a third order linear equation, Port. Math., 68 (2011), pp. 279–296. · Zbl 1241.35023
[11] M. Eller, Continuous observability for the anisotropic Maxwell system, Appl. Math. Optim., 55 (2007), pp. 185–201. · Zbl 1128.35100
[12] O. Yu. Èmanuilov, Boundary controllability of hyperbolic equations, Siberian Math. J., 41 (2000), pp. 785–799. · Zbl 1078.93510
[13] S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. Partial Differential Equations, 33 (2008), pp. 1996–2019. · Zbl 1170.35331
[14] L. C. Evans, Partial Differential Equations, 2nd ed., AMS, Providence, RI, 2010. · Zbl 1194.35001
[15] M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), pp. 2037–2054. · Zbl 1327.35211
[16] P. Guzmán and J. Zhu, Exact boundary controllability of a microbeam model, J. Math. Anal. Appl., 425 (2015), pp. 655–665. · Zbl 1304.93028
[17] M. V. Klibanov and M. Yamamoto, Exact controllability for the time dependent transport equation, SIAM J. Control Optim., 46 (2007), pp. 2071–2195. · Zbl 1149.93009
[18] V. Komornik, Exact controllability in short time for the wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), pp. 153–164. · Zbl 0672.49025
[19] V. Komornik, Exact Controllability and Stabilization: The Multiplier Methond, RMA Res. App. Math. 36, Masson, Paris, 1994. · Zbl 0937.93003
[20] J. Lagnese, Boundary stabilization of linear elastodynamic systems, SIAM J. Control Optim., 21 (1983), pp. 968–984. · Zbl 0531.93044
[21] I. Lasiecka, Controllability and observability for quasilinear hyperbolic systems, SIAM Rev., 53 (2011), pp. 390–394.
[22] R. Leis, Initial-Boundary Value Problems in Mathematical Physics, Dover, New York, 1986. · Zbl 0599.35001
[23] J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), pp. 1–68. · Zbl 0644.49028
[24] J. L. Lions, Contrôlabilité Exact et Stabilisation de Systèmes Distribués, Vol. 1, Masson, Paris, 1988. · Zbl 0653.93002
[25] W. Liu and G. H. Williams, Exact Neumann boundary controllability for second order hyperbolic equations, Colloq. Math., 76 (1998), pp. 117–142. · Zbl 0896.93004
[26] B. Miara and A. Münch, Exact controllability of a piezoelectric body. Theory and numerical simulation, Appl. Math. Optim., 59 (2009), pp. 383–412. · Zbl 1169.93007
[27] J. E. Mun͂oz Rivera and M. L. Olivera, Stability in inhomogeneous and anisotropic thermoelasticity, Boll. Unione Mat. Ital. 11 (1997), pp. 115–127. · Zbl 0891.73012
[28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[29] B. Rao, L. Toufayli, and A. Wehbe, Stability and controllability of a wave equation with dynamical boundary control, Math. Control Relat. Fields, 5 (2015), pp. 305–320. · Zbl 1329.35185
[30] D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Stud. Appl. Math., 52 (1973), pp. 189–211. · Zbl 0274.35041
[31] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), pp. 639–739. · Zbl 0397.93001
[32] K. Sakthivel, K. Balachandran, and S. S. Sritharan, Exact controllability of nonlinear diffusion equations arising in reactor dynamics, Nonlinear Anal. Real World Appl., 9 (2008), pp. 2029–2054. · Zbl 1156.93321
[33] A. Sène, Exact boundary controllability for the semilinear wave equation in fractional order spaces, Glob. J. Pure Appl. Math., 3 (2007), pp. 167–173. · Zbl 1142.93009
[34] J. J. Telega and W. R. Bielski, Exact controllability of anisotropic elastic bodies, in Modelling and Optimization of Distributed Parameter Systems Applications to Engineering, K. Malanowski, Z. Nahorski, and M. Peszynska, eds., Springer, New York, 1996. · Zbl 0886.93003
[35] J. Vancostenoble and E. Zuazua, Hardy inequalities, observability, and control for the wave and Schrödinger equations with singular potentials, SIAM J. Math. Anal., 41 (2009), pp. 1508–1532. · Zbl 1200.35008
[36] R. Wen, S. Chai, and B.-Z. Guo, Well-posedness and exact controllability of fourth order Schrödinger equation with boundary control and collocated observation, SIAM J. Control Optim., 52 (2014), pp. 365–396. · Zbl 1292.93040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.