×

On relaxation times in the Navier-Stokes-Voigt model. (English) Zbl 07508633

Summary: We study analytically and numerically the relaxation time of flow evolution governed by the Navier-Stokes-Voigt (NSV) model. We first show that for the Taylor-Green vortex decay problem, NSV admits an exact solution which evolves slower than true fluid flow. Secondly, we show numerically for a channel flow test problem using standard discretisation methods that although NSV provides more regular solutions compared to usual Navier-Stokes solutions, NSV approximations take significantly longer to reach the steady state.

MSC:

76-XX Fluid mechanics
35-XX Partial differential equations
Full Text: DOI

References:

[1] Bowers, A. L.; Rebholz, L. G., Increasing Accuracy and Efficiency in FE Computations of the Leray-deconvolution Model, Numerical Methods for Partial Differential Equations, 28, 2, 720-736 (2012) · Zbl 1414.76035 · doi:10.1002/num.20653
[2] Brenner, S.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994), New York: Springer-Verlag, New York · Zbl 0804.65101
[3] Bryan, K., Accelerating the Convergence to Equilibrium of Ocean-climate Models, Journal of Physical Oceanography, 14, 666-673 (1984) · doi:10.1175/1520-0485(1984)014<0666:ATCTEO>2.0.CO;2
[4] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics (2007), Berlin: Springer, Berlin · Zbl 1121.76001
[5] Cao, Y.; Lunasin, E.; Titi, E. S., Global Well-posedness of the Three-dimensional Viscous and Inviscid Simplified Bardina Turbulence Models, Communications in Mathematical Sciences, 4, 4, 823-848 (2006) · Zbl 1127.35034
[6] Chorin, A. J., Numerical Solution for the Navier-Stokes Equations, Mathematics of Computation, 22, 745-762 (1968) · Zbl 0198.50103 · doi:10.1090/S0025-5718-1968-0242392-2
[7] Douglas, J.; Dupont, T., Galerkin Methods for Parabolic Equations, SIAM Journal on Numerical Analysis, 7, 4, 575-626 (1970) · Zbl 0224.35048 · doi:10.1137/0707048
[8] Green, A. E.; Taylor, G. I., Mechanism of the Production of Small Eddies from Larger Ones, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 158, 499-521 (1937) · JFM 63.1358.03 · doi:10.1098/rspa.1937.0036
[9] John, V.; Layton, W. J., Analysis of Numerical Errors in Large Eddy Simulation, SIAM Journal on Numerical Analysis, 40, 3, 995-1020 (2002) · Zbl 1026.76028 · doi:10.1137/S0036142900375554
[10] Koseoglu, A., The Navier-Stokes Voight Model and Convergence to Equilibrium and Statistical Equilibrium (2011), Department of Mathematics, University of Pittsburgh
[11] Kuberry, P.; Larios, A.; Rebholz, L.; Wilson, N., Numerical Approximation of the Voigt Regularization of Incompressible NSE and MHD Flows, Computers and Mathematics with Applications (2012)
[12] Labovsky, A.; Layton, W.; Manica, C.; Neda, M.; Rebholz, L., The Stabilized Extrapolated Trapezoidal Finite Element Method for the Navier-Stokes Equations, Computer Methods in Applied Mechanics and Engineering, 198, 958-974 (2009) · Zbl 1229.76051 · doi:10.1016/j.cma.2008.11.004
[13] Layton, W., An Introduction to the Numerical Analysis of Viscous Incompressible Flows (2008), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1153.76002
[14] Oskolkov, A. P., The Uniqueness and Solvability in the Large of Boundary Value Problems for the Equations of Motion of Aqueous Solutions of Polymers, 7 Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38, 98-136 (1973)
[15] Tafti, D., Comparison of Some Upwind-biased High-order Formulations With a Second Order Central-difference Scheme for Time Integration of the Incompressible Navier-Stokes Equations, Computers & Fluids, 25, 7, 647-665 (1996) · Zbl 0888.76061 · doi:10.1016/0045-7930(96)00015-1
[16] Taylor, G. I., On Decay of Vortices in a Viscous Fluid, Philosophical Magazine, 46, 671-674 (1923) · JFM 49.0607.02 · doi:10.1080/14786442308634295
[17] Voigt, W., Ueber Innere Reibung Fester Korper, Insbesondere der Metalle, Annalen der Physik, 283, 671-693 (1892) · JFM 24.0932.01 · doi:10.1002/andp.18922831210
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.