×

Analysis of fully discrete finite element methods for 2D Navier-Stokes equations with critical initial data. (English) Zbl 1503.65238

Summary: First-order convergence in time and space is proved for a fully discrete semi-implicit finite element method for the two-dimensional Navier-Stokes equations with \(L^2\) initial data in convex polygonal domains, without extra regularity assumptions or grid-ratio conditions. The proof utilises the smoothing properties of the Navier-Stokes equations in the analysis of the consistency errors, an appropriate duality argument, and the smallness of the numerical solution in the discrete \(L^2(0, t_m; H^1)\) norm when \(t_m\) is smaller than some constant. Numerical examples are provided to support the theoretical analysis.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
35Q30 Navier-Stokes equations

References:

[1] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Company, New York (1977). · Zbl 0383.35057
[2] J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353-384. · Zbl 0694.76014 · doi:10.1137/0727022
[3] M. Marion and R. Temam, Navier-Stokes equations: theory and approximation. Handb. Numer. Anal. 6 (1998) 503-689. · Zbl 0921.76040
[4] F. Tone, Error analysis for a second order scheme for the Navier-Stokes equations. Appl. Numer. Math. 50 (2004) 93-119. · Zbl 1093.76046 · doi:10.1016/j.apnum.2003.12.003
[5] Y. He and W. Sun, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 45 (2007) 837-869. · Zbl 1145.35318 · doi:10.1137/050639910
[6] G. Baker, Galerkin Approximations for the Navier-Stokes Equations. Harvard University, August (1976).
[7] Y. Guo and Y. He, Unconditional convergence and optimal L^2 error estimates of the Crank-Nicolson extrapolation FEM for the nonstationary Navier-Stokes equations. Comput. Math. Appl. 75 (2018) 134-152. · Zbl 1416.76108 · doi:10.1016/j.camwa.2017.08.034
[8] H. Sun, Y. He and X. Feng, On error estimates of the pressure-correction projection methods for the time-dependent Navier-Stokes equations. Int. J. Numer. Anal. Mod. 8 (2011) 70-85. · Zbl 1432.35168
[9] R. Ingram, A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations. Math. Comp. 82 (2013) 1953-1973. · Zbl 1457.65115 · doi:10.1090/S0025-5718-2013-02678-6
[10] V.J. Ervin, W.J. Layton and M. Neda, Numerical analysis of filter-based stabilization for evolution equations. SIAM J. Numer. Anal. 50 (2012) 2307-2335. · Zbl 1255.76021 · doi:10.1137/100782048
[11] A. Labovsky, W. Layton, C.C. Manica, M. Neda and L.G. Rebholz, The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations. Comput. Method. Appl. Mech. Eng. 198 (2009) 958-974. · Zbl 1229.76051 · doi:10.1016/j.cma.2008.11.004
[12] V. DeCaria, W. Layton and H. Zhao, A time-accurate, adaptive discretization for fluid flow problems. Int. J. Numer. Anal. Modeling 17 (2020) 254-280. · Zbl 07244844
[13] W. Layton, N. Mays, M. Neda and C. Trenchea, Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier-Stokes equations. ESAIM: M2AN 48 (2014) 765-793. · Zbl 1293.35210 · doi:10.1051/m2an/2013120
[14] J. Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29 (1992) 57-77. · Zbl 0741.76051 · doi:10.1137/0729004
[15] J. Shen, On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer. Math. 62 (1992) 49-73. · Zbl 0782.76025
[16] Y. Achdou and J.-L. Guermond, Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37 (2000) 799-826. · Zbl 0966.76041 · doi:10.1137/S0036142996313580
[17] L. Shan, W.J. Layton and H. Zheng, Numerical analysis of modular VMS methods with nonlinear eddy viscosity for the Navier-Stokes equations. Int. J. Numer. Anal. Mod. 10 (2013) 943-971. · Zbl 1426.76625
[18] S. Badia and R. Codina, Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition. Numer. Math. 107 (2007) 533-557. · Zbl 1132.76029
[19] G.A. Baker, V.A. Dougalis and O.A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comput. 39 (1982) 339-375. · Zbl 0503.76038 · doi:10.1090/S0025-5718-1982-0669634-0
[20] K. Wang and Y. He, Convergence analysis for a higher order scheme for the time-dependent Navier-Stokes equations. Appl. Math. Comput. 218 (2012) 8269-8278. · Zbl 1245.76115
[21] S. Badia and R. Codina, Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework. SIAM J. Numer. Anal. 44 (2006) 2159-2197. · Zbl 1126.65079
[22] R. Bermejo, P.G. del Sastre and L. Saavedra, A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 50 (2012) 3084-3109. · Zbl 1263.76040 · doi:10.1137/11085548X
[23] J. De Frutos, B. Garca-Archilla and J. Novo, Postprocessing finite-element methods for the Navier-Stokes equations: the fully discrete case. SIAM J. Numer. Anal. 47 (2009) 596-621. · Zbl 1391.76379 · doi:10.1137/070707580
[24] L.G. Rebholz, An energy-and helicity-conserving finite element scheme for the Navier-Stokes equations. SIAM J. Numer. Anal. 45 (2007) 1622-1638. · Zbl 1141.76039 · doi:10.1137/060651227
[25] J. De Frutos, B. Garca-Archilla, V. John and J. Novo, Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization. IMA J. Numer. Anal. 39 (2019) 1747-1786. · Zbl 1496.65160 · doi:10.1093/imanum/dry044
[26] B. Garca-Archilla, V. John and J. Novo, Symmetric pressure stabilization for equal order finite element approximations to the time-dependent Navier-Stokes equations. IMA J. Numer. Anal. 41 (2021) 1093-1129. · Zbl 07528272 · doi:10.1093/imanum/draa037
[27] S. Kaya and B. Rivière, A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 43 (2005) 1572-1595. · Zbl 1096.76026 · doi:10.1137/S0036142903434862
[28] A.T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal. 20 (2000) 633-667. · Zbl 0982.76022 · doi:10.1093/imanum/20.4.633
[29] Y. He, The Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations with nonsmooth initial data. Numer. Meth. Partial Diff. Equ. 28 (2012) 155-187. · Zbl 1431.76089
[30] Y. He, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with H^2 or H^1 initial data. Numer. Meth. Partial Diff. Equ. 21 (2005) 875-904. · Zbl 1076.76059
[31] I. Gallagher, Critical Function Spaces for the Wellposedness of the Navier-Stokes Initial Value Problem. Springer International Publishing, Cham (2016) 1-39.
[32] Y. He, Stability and error analysis for spectral Galerkin method for the Navier-Stokes equations with L^2 initial data. Numer. Meth. Partial Diff. Equ. 24 (2008) 79-103. · Zbl 1128.76045
[33] Y. He and W. Sun, Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations. Math. Comput. 76 (2007) 115-136. · Zbl 1129.35004 · doi:10.1090/S0025-5718-06-01886-2
[34] B. Li and S. Ma, A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data. J. Sci. Comput. 87 (2021) 1-16. · Zbl 1476.65302 · doi:10.1007/s10915-021-01483-2
[35] J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83 (2014) 15-36. · Zbl 1322.76041
[36] L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM: M2AN 19 (1985) 111-143. · Zbl 0608.65013 · doi:10.1051/m2an/1985190101111
[37] J. Guzmán and L.R. Scott, The Scott-Vogelius finite elements revisited. Math. Comput. 88 (2019) 515-529. · Zbl 1405.65150
[38] A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences. Vol. 159. Springer-Verlag, New York (2004). · Zbl 1059.65103 · doi:10.1007/978-1-4757-4355-5
[39] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd edition. Springer-Verlag, New York (2006). · Zbl 1105.65102
[40] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edition. Academic Press, Amsterdam (2003). · Zbl 1098.46001
[41] R.B. Kellogg, J.E. Osborn, A regularity for the Stokes problem in a convex polygon, J. Funct. Anal. 21 (1976) 397-431. · Zbl 0317.35037
[42] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483-493. · Zbl 0696.65007
[43] J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275-311. · Zbl 0487.76035 · doi:10.1137/0719018
[44] M. Hofmanováa and K. Schratz, An exponential-type integrator for the KdV equation. Numer. Math. 136 (2017) 1117-1137. · Zbl 1454.65034
[45] A. Ostermann and K. Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18 (2018) 731-755. · Zbl 1402.65098 · doi:10.1007/s10208-017-9352-1
[46] F. Rousset and K. Schratz, A general framework of low regularity integrators. SIAM J. Numer. Anal. 59 (2021) 1735-1768. · Zbl 1486.65127 · doi:10.1137/20M1371506
[47] J. Simon, Compact sets in the spacel L^P(0, T; B). Annali di Matematica pura ed applicata 146 (1986) 65-96. · Zbl 0629.46031 · doi:10.1007/BF01762360
[48] J.L. Kelley, General Topology. Springer-Verlag (1975). · Zbl 0306.54002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.