×

A stabilized implicit fractional-step method for the time-dependent Navier-Stokes equations using equal-order pairs. (English) Zbl 1245.35082

Summary: A stabilized implicit fractional-step method for numerical solutions of the time-dependent Navier-Stokes equations is presented in this paper. The time advancement is decomposed into a sequence of two steps: the first step has the structure of the linear elliptic problem; the second step can be seen as the generalized Stokes problem. The two problems satisfy the full homogeneous Dirichlet boundary conditions on the velocity. On the other hand, a locally stabilized term is added in the second step of the schemes. It allows one to enhance the numerical stability and efficiency by using the equal-order pairs. Convergence analysis and error estimates for the velocity and pressure of the schemes are established via the energy method. Some numerical experiments are also used to demonstrate the efficiency of this new method.

MSC:

35Q30 Navier-Stokes equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Software:

FreeFem++
Full Text: DOI

References:

[1] Badia, S.; Codina, R., Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition, Numer. Math., 107, 533-557 (2007) · Zbl 1132.76029
[2] Blasco, J.; Codina, R., Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier-Stokes equations, Appl. Numer. Math., 38, 475-497 (2001) · Zbl 1011.76041
[3] Blasco, J.; Codina, R., Error estimates for an operator-splitting method for incompressible flows, Appl. Numer. Math., 51, 1-17 (2004) · Zbl 1126.76339
[4] Blasco, J.; Codina, R.; Huerta, A., A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm, Internat. J. Numer. Methods Fluids, 28, 1391-1419 (1997) · Zbl 0935.76041
[5] Codina, R., Pressure stability in fractional step finite element methods for incompressible flows, J. Comput. Phys., 170, 112-140 (2001) · Zbl 1002.76063
[6] Codina, R.; Badia, S., On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems, Comput. Methods Appl. Mech. Engrg., 195, 2900-2918 (2006) · Zbl 1121.76032
[7] Codina, R.; Blasco, J., A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation, Comput. Methods Appl. Mech. Engrg., 143, 373-391 (1997) · Zbl 0893.76040
[8] Feng, X.; He, Y., The convergence of a new parallel algorithm for the Navier-Stokes equations, Nonlinear Anal. RWA, 10, 23-41 (2009) · Zbl 1154.65355
[9] Feng, X.; He, Y.; Liu, D., Convergence analysis of an implicit fractional-step method for the incompressible Navier-Stokes equations, Appl. Math. Model., 35, 5856-5871 (2011) · Zbl 1228.76040
[10] Girault, V.; Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equation (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0396.65070
[11] Guermond, J. L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195, 6011-6045 (2006) · Zbl 1122.76072
[12] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 308-323 (1985) · Zbl 0582.76038
[13] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (1984), North-Holland: North-Holland Amsterdam · Zbl 0568.35002
[14] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comp., 22, 745-762 (1968) · Zbl 0198.50103
[15] Chorin, A. J., On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comp., 23, 341-353 (1969) · Zbl 0184.20103
[16] Saleri, F.; Veneziani, A., Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 43, 174-194 (2005) · Zbl 1128.76047
[17] Gervasio, P.; Saleri, F., Algebraic fractional-step schemes for time-dependent incompressible Navier-Stokes equations, J. Sci. Comput., 27, 257-269 (2006) · Zbl 1103.76043
[18] Quarteroni, A.; Saleri, F.; Veneziani, A., Factorization methods for the numerical approximation of Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 188, 505-526 (2000) · Zbl 0976.76044
[19] Shen, J., On error estimates of projection methods for Navier-Stokes equations: first order schemes, SIAM J. Numer. Anal., 29, 57-77 (1992) · Zbl 0741.76051
[20] Shen, J., On the error estimates of some higher order projection and penalty projection schemes for the Navier-Stokes equations, Numer. Math., 62, 49-73 (1992) · Zbl 0739.76017
[21] Glowinski, R., Numerical Methods for Nonlinear Variational Problems (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0575.65123
[22] Bochev, P.; Dohrmann, C.; Gunzburger, M., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44, 82-101 (2006) · Zbl 1145.76015
[23] Bochev, P.; Gunzburger, M., An absolutely stable pressure—Poisson stabilized finite element method for the Stokes equations, SIAM J. Numer. Anal., 42, 1189-1207 (2004) · Zbl 1159.76346
[24] Labovsky, A.; Layton, W. J.; Manica, C. C.; Neda, M.; Rebholz, L. G., The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198, 958-974 (2009) · Zbl 1229.76051
[25] Feng, X.; Kim, I.; Nam, H.; Sheen, D., Locally stabilized \(P_1\)-nonconforming quadrilateral and hexahedral finite element method for the Stokes equations, J. Comput. Appl. Math., 236, 714-727 (2011) · Zbl 1233.65088
[26] He, Y.; Li, J., A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations, Appl. Numer. Math., 58, 1503-1514 (2008) · Zbl 1155.35406
[27] Li, J.; Chen, Z., A new local stabilized nonconforming finite element method for the Stokes equations, Computing, 82, 58-65 (2008) · Zbl 1132.35436
[28] Li, J.; He, Y.; Chen, Z., Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs, Computing, 86, 37-51 (2009) · Zbl 1176.65136
[29] Shang, Y., New stabilized finite element method for time-dependent incompressible flow problems, Internat. J. Numer. Methods Fluids, 62, 166-187 (2010) · Zbl 1422.76048
[30] Zheng, H.; Hou, Y.; Shi, F.; Song, L., A finite element variational multiscale method for incompressible flows based on two local Gauss integrations, J. Comput. Phys., 228, 5961-5977 (2009) · Zbl 1168.76028
[31] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second-order estimates for spatial discretization, SIAM J. Numer. Anal., 19, 275-311 (1982) · Zbl 0487.76035
[32] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for s second-order time discretization, SIAM J. Numer. Anal., 27, 353-384 (1990) · Zbl 0694.76014
[33] He, Y., The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comp., 77, 2097-2124 (2008) · Zbl 1198.65222
[34] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[35] FreeFem++, version 2.23. http://www.freefem.org/; FreeFem++, version 2.23. http://www.freefem.org/
[36] Layton, W.; Manica, C. C.; Neda, M.; Olshanskii, M.; Rebholz, L. G., On the accuracy of the rotation form in simulations of the Navier-Stokes equations, J. Comput. Phys., 228, 3433-3447 (2009) · Zbl 1161.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.