×

Robust numerical methods for singularly perturbed differential equations: a survey covering 2008-2012. (English) Zbl 1264.65116

Summary: We present new results in the numerical analysis of singularly perturbed convection-diffusion-reaction problems that have appeared in the last five years. Mainly discussing layer-adapted meshes, we present also a survey on stabilization methods, adaptive methods, and on systems of singularly perturbed equations.

MSC:

65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
Full Text: DOI

References:

[1] Roos, H.-G.; Stynes, M.; Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations. Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer Series in Computational Mathematics, 24 (2008), Berlin, Germany: Springer, Berlin, Germany · Zbl 1155.65087
[2] Linß, T., Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Lecture Notes in Mathematics, 1985 (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1202.65120 · doi:10.1007/978-3-642-05134-0
[3] Kadalbajoo, M. K.; Gupta, V., A brief survey on numerical methods for solving singularly perturbed problems, Applied Mathematics and Computation, 217, 8, 3641-3716 (2010) · Zbl 1208.65105 · doi:10.1016/j.amc.2010.09.059
[4] Franca, L. P.; Hauke, G.; Masud, A., Revisiting stabilized finite element methods for the advective-diffusive equation, Computer Methods in Applied Mechanics and Engineering, 195, 13-16, 1560-1572 (2006) · Zbl 1122.76054 · doi:10.1016/j.cma.2005.05.028
[5] Lube, G.; Wesseling, P.; Onate, E.; Periaux, J., Stabilized fem for incompressible ow. critical review and new trends, European Conference on Computational Fluid Dynamics (ECCOMAS CFD ’06), TU Delft
[6] Brezzi, F.; Russo, A., Choosing bubbles for advection-diffusion problems, Mathematical Models & Methods in Applied Sciences, 4, 4, 571-587 (1994) · Zbl 0819.65128 · doi:10.1142/S0218202594000327
[7] Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling, Mathematical Modelling and Numerical Analysis, 33, 6, 1293-1316 (1999) · Zbl 0946.65112 · doi:10.1051/m2an:1999145
[8] Hughes, T. J. R., Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, 127, 1-4, 387-401 (1995) · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[9] John, V.; Kaya, S.; Layton, W., A two-level variational multiscale method for convection-dominated convection-diffusion equations, Computer Methods in Applied Mechanics and Engineering, 195, 33-36, 4594-4603 (2006) · Zbl 1124.76028 · doi:10.1016/j.cma.2005.10.006
[10] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation (2005), New York, NY, USA: Oxford University Press, New York, NY, USA · Zbl 1083.76001
[11] Serghini Mounim, A., A stabilized finite element method for convection-diffusion problems, Numerical Methods for Partial Differential Equations, 28, 6, 1916-1943 (2012) · Zbl 1312.76032
[12] Knobloch, P., On the definition of the SUPG parameter, Electronic Transactions on Numerical Analysis, 32, 76-89 (2008) · Zbl 1171.65079
[13] Knobloch, P., On the choice of the SUPG parameter at outflow boundary layers, Advances in Computational Mathematics, 31, 4, 369-389 (2009) · Zbl 1183.65144 · doi:10.1007/s10444-008-9075-6
[14] John, V.; Knobloch, P.; Savescu, S. B., A posteriori optimization of parameters in stabilized methods for convection-diffusion problems—part I, Computer Methods in Applied Mechanics and Engineering, 200, 41-44, 2916-2929 (2011) · Zbl 1230.76026 · doi:10.1016/j.cma.2011.04.016
[15] John, V.; Knobloch, P., On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review, Computer Methods in Applied Mechanics and Engineering, 196, 17-20, 2197-2215 (2007) · Zbl 1173.76342 · doi:10.1016/j.cma.2006.11.013
[16] John, V.; Knobloch, P., On the performance of SOLD methods for convection-diffusion problems with interior layers, International Journal of Computing Science and Mathematics, 1, 2-4, 245-258 (2007) · Zbl 1185.65212 · doi:10.1504/IJCSM.2007.016534
[17] John, V.; Knobloch, P., On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. II. Analysis for \(P_1\) and \(Q_1\) finite elements, Computer Methods in Applied Mechanics and Engineering, 197, 21-24, 1997-2014 (2008) · Zbl 1194.76122 · doi:10.1016/j.cma.2007.12.019
[18] Augustin, M.; Caiazzo, A.; Fiebach, A.; Fuhrmann, J.; John, V.; Linke, A.; Umla, R., An assessment of discretizations for convection-dominated convection-diffusion equations, Computer Methods in Applied Mechanics and Engineering, 200, 47-48, 3395-3409 (2011) · Zbl 1230.76021 · doi:10.1016/j.cma.2011.08.012
[19] Burman, E.; Hansbo, P., Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Computer Methods in Applied Mechanics and Engineering, 193, 15-16, 1437-1453 (2004) · Zbl 1085.76033 · doi:10.1016/j.cma.2003.12.032
[20] Schieweck, F., On the role of boundary conditions for CIP stabilization of higher order finite elements, Electronic Transactions on Numerical Analysis, 32, 1-16 (2008) · Zbl 1172.65383
[21] Burman, E.; Ern, A., Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence, Mathematics of Computation, 74, 252, 1637-1652 (2005) · Zbl 1078.65088 · doi:10.1090/S0025-5718-05-01761-8
[22] Knobloch, P., A generalization of the local projection stabilization for convection-diffusion-reaction equations, SIAM Journal on Numerical Analysis, 48, 2, 659-680 (2010) · Zbl 1251.65159 · doi:10.1137/090767807
[23] Codina, R., Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Computer Methods in Applied Mechanics and Engineering, 190, 13-14, 1579-1599 (2000) · Zbl 0998.76047 · doi:10.1016/S0045-7825(00)00254-1
[24] Becker, R.; Braack, M., A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38, 4, 173-199 (2001) · Zbl 1008.76036 · doi:10.1007/s10092-001-8180-4
[25] Matthies, G.; Skrzypacz, P.; Tobiska, L., A unified convergence analysis for local projection stabilisations applied to the Oseen problem, Mathematical Modelling and Numerical Analysis, 41, 4, 713-742 (2007) · Zbl 1188.76226 · doi:10.1051/m2an:2007038
[26] Codina, R., Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales, Applied Numerical Mathematics, 58, 3, 264-283 (2008) · Zbl 1144.76029 · doi:10.1016/j.apnum.2006.11.011
[27] Knobloch, P.; Tobiska, L., On the stability of finite-element discretizations of convection-diffusion-reaction equations, IMA Journal of Numerical Analysis, 31, 1, 147-164 (2011) · Zbl 1211.65147 · doi:10.1093/imanum/drp020
[28] Knobloch, P.; Lube, G., Local projection stabilization for advection-diffusion-reaction problems: one-level vs. two-level approach, Applied Numerical Mathematics, 59, 12, 2891-2907 (2009) · Zbl 1180.65139 · doi:10.1016/j.apnum.2009.06.004
[29] He, L.; Tobiska, L., The two-level local projection stabilization as an enriched one-level approach, Advances in Computational Mathematics, 36, 4, 503-523 (2012) · Zbl 1253.65171 · doi:10.1007/s10444-011-9188-1
[30] Juhnke, D.; Tobiska, L., A local projection type stabilization with exponential enrichments applied to one-dimensional advection-diffusion equations, Computer Methods in Applied Mechanics and Engineering, 201-204, 179-190 (2012) · Zbl 1239.65049 · doi:10.1016/j.cma.2011.10.005
[31] Barrenechea, G. R.; Valentin, F., A residual local projection method for the Oseen equation, Computer Methods in Applied Mechanics and Engineering, 199, 29-32, 1906-1921 (2010) · Zbl 1231.76135 · doi:10.1016/j.cma.2010.01.014
[32] Barrenechea, G. R.; John, V.; Knobloch, P., A Local Projection Stabilisation Finite Element Method Wiith Nonlinear Crosswind Diffusion for Convection-Diffusion-Reaction Equations (2012), Berlin, Germany: WIAS, Berlin, Germany
[33] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Frontiers in Applied Mathematics, 35 (2008), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA · Zbl 1153.65112 · doi:10.1137/1.9780898717440
[34] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Texts in Applied Mathematics, 54 (2008), New York, NY, USA: Springer, New York, NY, USA · Zbl 1134.65068 · doi:10.1007/978-0-387-72067-8
[35] Kanschat, G., Discontinuous Galerkin Methods for Viscous Incompressible Flow (2008), Advances in Numerical Mathematics. Vieweg
[36] Di Pietro, D. A.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods. Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications, 69 (2012), Berlin: Springer, Berlin · Zbl 1231.65209
[37] Bazilevs, Y.; Hughes, T. J. R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Computers & Fluids, 36, 1, 12-26 (2007) · Zbl 1115.76040 · doi:10.1016/j.compfluid.2005.07.012
[38] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J. R., Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Computer Methods in Applied Mechanics and Engineering, 196, 49-52, 4853-4862 (2007) · Zbl 1173.76397 · doi:10.1016/j.cma.2007.06.026
[39] Burman, E., A penalty-free nonsymmetric nitsche-type method for the weak imposition of boundary conditions, SIAM Journal on Numerical Analysis, 50, 4, 1959-1981 (2012) · Zbl 1262.65165
[40] Ewing, R. E.; Wang, J.; Yang, Y., A stabilized discontinuous finite element method for elliptic problems, Numerical Linear Algebra with Applications, 10, 1-2, 83-104 (2003) · Zbl 1071.65551 · doi:10.1002/nla.313
[41] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM Journal on Numerical Analysis, 47, 2, 1319-1365 (2009) · Zbl 1205.65312 · doi:10.1137/070706616
[42] Causin, P.; Sacco, R., A discontinuous Petrov-Galerkin method with Lagrangian multipliers for second order elliptic problems, SIAM Journal on Numerical Analysis, 43, 1, 280-302 (2005) · Zbl 1087.65105 · doi:10.1137/S0036142903427871
[43] Cockburn, B.; Dong, B.; Guzmán, J.; Restelli, M.; Sacco, R., A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems, SIAM Journal on Scientific Computing, 31, 5, 3827-3846 (2009) · Zbl 1200.65093 · doi:10.1137/080728810
[44] Egger, H.; Schöberl, J., A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems, IMA Journal of Numerical Analysis, 30, 4, 1206-1234 (2010) · Zbl 1204.65133 · doi:10.1093/imanum/drn083
[45] Bottasso, C. L.; Micheletti, S.; Sacco, R., A multiscale formulation of the discontinuous Petrov-Galerkin method for advective-diffusive problems, Computer Methods in Applied Mechanics and Engineering, 194, 25-26, 2819-2838 (2005) · Zbl 1093.76030 · doi:10.1016/j.cma.2004.07.024
[46] Causin, P.; Sacco, R.; Bottasso, C. L., Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems, Mathematical Modelling and Numerical Analysis, 39, 6, 1087-1114 (2005) · Zbl 1084.65105 · doi:10.1051/m2an:2005050
[47] Demkowicz, L.; Gopalakrishnan, J., A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions, Numerical Methods for Partial Differential Equations, 27, 1, 70-105 (2011) · Zbl 1208.65164 · doi:10.1002/num.20640
[48] Heuer, N.; Demkowicz, L., Robust Dpg Method for Convection-Dominated Diffusion Problems, University of Texas at Austin, ICES · Zbl 1290.65088
[49] Chan, J.; Heuer, N.; Bui-Thanh, T.; Demkowicz, D., Robust dpg method for convection-dominated diffusion problems ii: a natural in flow condition
[50] Labeur, R. J.; Wells, G. N., A Galerkin interface stabilisation method for the advection-diffusion and incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 196, 49-52, 4985-5000 (2007) · Zbl 1173.76344 · doi:10.1016/j.cma.2007.06.025
[51] Wells, G. N., Analysis of an interface stabilized finite element method: the advection-diffusion-reaction equation, SIAM Journal on Numerical Analysis, 49, 1, 87-109 (2011) · Zbl 1226.65097 · doi:10.1137/090775464
[52] Kuzmin, D.; Turek, S., Flux correction tools for finite elements, Journal of Computational Physics, 175, 2, 525-558 (2002) · Zbl 1028.76023 · doi:10.1006/jcph.2001.6955
[53] Kuzmin, D., Free Cfd Book: A Guide to Numerical Methods for Transport Equations (2010), University Erlangen-Nürnberg
[54] Burman, E.; Fernández, M. A., Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation, Computer Methods in Applied Mechanics and Engineering, 198, 33-36, 2508-2519 (2009) · Zbl 1228.76081 · doi:10.1016/j.cma.2009.02.011
[55] Ahmed, N.; Matthies, G.; Tobiska, L.; Xie, H., Discontinuous Galerkin time stepping with local projection stabilization for transient convection-diffusion-reaction problems, Computer Methods in Applied Mechanics and Engineering, 200, 21-22, 1747-1756 (2011) · Zbl 1228.76078 · doi:10.1016/j.cma.2011.02.003
[56] Feistauer, M.; Hájek, J.; Svadlenka, K., Space-time discontinuous Galerkin method for solving nonstationary convection-diffusion-reaction problems, Applications of Mathematics, 52, 3, 197-233 (2007) · Zbl 1164.65469 · doi:10.1007/s10492-007-0011-8
[57] Burman, E.; Ern, A., Implicit-explicit Runge-Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations, Mathematical Modelling and Numerical Analysis, 46, 4, 681-707 (2012) · Zbl 1281.65123 · doi:10.1051/m2an/2011047
[58] Dolejší, V.; Feistauer, M.; Kučera, V.; Sobotíková, V., An optimal \(L^\infty(L^2)\)-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem, IMA Journal of Numerical Analysis, 28, 3, 496-521 (2008) · Zbl 1158.65067 · doi:10.1093/imanum/drm023
[59] Dolejší, V.; Vlasák, M., Analysis of a BDF-DGFE scheme for nonlinear convection-diffusion problems, Numerische Mathematik, 110, 4, 405-447 (2008) · Zbl 1158.65068 · doi:10.1007/s00211-008-0178-2
[60] John, V.; Novo, J., Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations, SIAM Journal on Numerical Analysis, 49, 3, 1149-1176 (2011) · Zbl 1233.65065 · doi:10.1137/100789002
[61] Burman, E.; Smith, G., Analysis of the space semi-discretized SUPG method for transient convection-diffusion equations, Mathematical Models and Methods in Applied Sciences, 21, 10, 2049-2068 (2011) · Zbl 1241.65098 · doi:10.1142/S0218202511005659
[62] Burman, E., Consistent SUPG-method for transient transport problems: stability and convergence, Computer Methods in Applied Mechanics and Engineering, 199, 17-20, 1114-1123 (2010) · Zbl 1227.76047 · doi:10.1016/j.cma.2009.11.023
[63] Roos, H.-G.; Schopf, M., Error estimation in energy norms: is it necessary to fit the mesh to the boundary layer? · Zbl 1352.65542
[64] Lin, R., Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions, SIAM Journal on Numerical Analysis, 47, 1, 89-108 (2008) · Zbl 1189.65282 · doi:10.1137/070700267
[65] Nilssen, T. K.; Tai, X.-C.; Winther, R., A robust nonconforming \(H^2\)-element, Mathematics of Computation, 70, 234, 489-505 (2001) · Zbl 0965.65127 · doi:10.1090/S0025-5718-00-01230-8
[66] Guzmán, J.; Leykekhman, D.; Neilan, M., A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem, Calcolo, 49, 2, 95-125 (2012) · Zbl 1253.65150 · doi:10.1007/s10092-011-0047-8
[67] Axelsson, O.; Glushkov, E.; Glushkova, N., The local Green’s function method in singularly perturbed convection-diffusion problems, Mathematics of Computation, 78, 265, 153-170 (2009) · Zbl 1198.65058 · doi:10.1090/S0025-5718-08-02161-3
[68] Demkowicz, L.; Gopalakrishnan, J., A class of discontinuous Petrov-Galerkin methods. Part I: the transport equation, Computer Methods in Applied Mechanics and Engineering, 199, 23-24, 1558-1572 (2010) · Zbl 1231.76142 · doi:10.1016/j.cma.2010.01.003
[69] Demkowicz, L.; Gopalakrishnan, J.; Niemi, A. H., A class of discontinuous Petrov-Galerkin methods. Part III: adaptivity, Applied Numerical Mathematics, 62, 4, 396-427 (2012) · Zbl 1316.76047 · doi:10.1016/j.apnum.2011.09.002
[70] Han, H.; Huang, Z., Tailored finite point method based on exponential bases for convection-diffusion-reaction equation, Mathematics of Computation, 82, 281, 213-226 (2013) · Zbl 1262.65169 · doi:10.1090/S0025-5718-2012-02616-0
[71] Li, X.; Yu, X.; Chen, G., Error estimates of the finite element method with weighted basis functions for a singularly perturbed convection-diffusion equation, Journal of Computational Mathematics, 29, 2, 227-242 (2011) · Zbl 1249.65223
[72] Riou, H.; Ladevéze, P., A new numerical strategy for the resolution of high- péclet advection-diffusion problems, Computer Methods in Applied Mechanics and Engineering, 241-244, 302-310 (2012) · Zbl 1353.76058
[73] Lombardi, A. L.; Pietra, P., Exponentially fitted discontinuous galerkin schemes for singularly perturbed problems, Numerical Methods for Partial Differential Equations, 28, 6, 1747-1777 (2012) · Zbl 1251.65161
[74] Brezzi, F.; Marini, L. D.; Pietra, P., Two-dimensional exponential fitting and applications to drift-diffusion models, SIAM Journal on Numerical Analysis, 26, 6, 1342-1355 (1989) · Zbl 0686.65088 · doi:10.1137/0726078
[75] Holst, S.; Jüngel, A.; Pietra, P., A mixed finite-element discretization of the energy-transport model for semiconductors, SIAM Journal on Scientific Computing, 24, 6, 2058-2075 (2003) · Zbl 1163.65332 · doi:10.1137/S1064827501396440
[76] Kellogg, R. B.; Stynes, M., Corner singularities and boundary layers in a simple convection-diffusion problem, Journal of Differential Equations, 213, 1, 81-120 (2005) · Zbl 1159.35309 · doi:10.1016/j.jde.2005.02.011
[77] Kellogg, R. B.; Stynes, M., Sharpened bounds for corner singularities and boundary layers in a simple convection-diffusion problem, Applied Mathematics Letters, 20, 5, 539-544 (2007) · Zbl 1201.35094 · doi:10.1016/j.aml.2006.08.001
[78] Linß, T.; Stynes, M., Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem, Journal of Mathematical Analysis and Applications, 261, 2, 604-632 (2001) · Zbl 1200.35046 · doi:10.1006/jmaa.2001.7550
[79] O’Riordan, E.; Shishkin, G. I., A technique to prove parameter-uniform convergence for a singularly perturbed convection-diffusion equation, Journal of Computational and Applied Mathematics, 206, 1, 136-145 (2007) · Zbl 1117.65145 · doi:10.1016/j.cam.2006.06.002
[80] Bakhvalov, N. S., On the optimization of the methods for solving boundary value problems in the presence of a boundary layer, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 9, 841-859 (1969) · Zbl 0208.19103
[81] Linß, T., Layer-adapted meshes for convection-diffusion problems, Computer Methods in Applied Mechanics and Engineering, 192, 9-10, 1061-1105 (2003) · Zbl 1022.76036 · doi:10.1016/S0045-7825(02)00630-8
[82] Linß, T., Layer Adapted Meshes for Convection-Diffusion Problems (2006), Habilitation TU Dresden · Zbl 1056.65076
[83] Roos, H.-G., Error estimates for linear finite elements on Bakhvalov-type meshes, Applications of Mathematics, 51, 1, 63-72 (2006) · Zbl 1164.65486 · doi:10.1007/s10492-006-0005-y
[84] Apel, T.; Lube, G., Anisotropic mesh refinement in stabilized Galerkin methods, Numerische Mathematik, 74, 3, 261-282 (1996) · Zbl 0878.65097 · doi:10.1007/s002110050216
[85] Xie, Z.; Zhang, Z., Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D, Mathematics of Computation, 79, 269, 35-45 (2010) · Zbl 1208.65118 · doi:10.1090/S0025-5718-09-02297-2
[86] Melenk, J. M., hp-Finite Element Methods for Singular Perturbations. hp-Finite Element Methods for Singular Perturbations, Lecture Notes in Mathematics, 1796 (2002), Berlin, Germany: Springer, Berlin, Germany · Zbl 1021.65055 · doi:10.1007/b84212
[87] Linß, T.; Roos, H.-G.; Schopf, M., Nitsche-mortaring for singularly perturbed convection-diffusion problems, Advances in Computational Mathematics, 36, 4, 581-603 (2012) · Zbl 1253.65189 · doi:10.1007/s10444-011-9195-2
[88] Roos, H.-G.; Skalický, T., A comparison of the finite element method on Shishkin and Gartland-type meshes for convection-diffusion problems, CWI Quarterly, 10, 3-4, 277-300 (1997) · Zbl 0908.65099
[89] Liu, S.-T.; Xu, Y., Graded Galerkin methods for the high-order convection-diffusion problem, Numerical Methods for Partial Differential Equations, 25, 6, 1261-1282 (2009) · Zbl 1180.65093 · doi:10.1002/num.20396
[90] Stynes, M.; O’Riordan, E., A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem, Journal of Mathematical Analysis and Applications, 214, 1, 36-54 (1997) · Zbl 0917.65088 · doi:10.1006/jmaa.1997.5581
[91] Dobrowolski, M.; Roos, H.-G., A priori estimates for the solution of convection-diffusion problems and interpolation on Shishkin meshes, Zeitschrift für Analysis und ihre Anwendungen, 16, 4, 1001-1012 (1997) · Zbl 0892.35014
[92] Roos, H.-G.; Linß, T., Sufficient conditions for uniform convergence on layer-adapted grids, Computing, 63, 1, 27-45 (1999) · Zbl 0931.65085 · doi:10.1007/s006070050049
[93] Roos, H.-G.; Schopf, M., Analysis of finite element methods on Bakhvalov-type meshes for linear convection-diffusion problems in 2D, Applications of Mathematics, 57, 2, 97-108 (2012) · Zbl 1249.65248 · doi:10.1007/s10492-012-0007-x
[94] Durán, R. G.; Lombardi, A. L., Finite element approximation of convection diffusion problems using graded meshes, Applied Numerical Mathematics, 56, 10-11, 1314-1325 (2006) · Zbl 1104.65109 · doi:10.1016/j.apnum.2006.03.029
[95] Roos, H.-G.; Schopf, M., Finite elements on locally uniform meshes for convection-diffusion problems with boundary layers, Computing, 92, 4, 285-296 (2011) · Zbl 1228.65129 · doi:10.1007/s00607-011-0144-1
[96] Franz, S.; Linß, T., Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection-diffusion problem with characteristic layers, Numerical Methods for Partial Differential Equations, 24, 1, 144-164 (2008) · Zbl 1133.65090 · doi:10.1002/num.20245
[97] Sun, P.; Chen, L.; Xu, J., Numerical studies of adaptive finite element methods for two dimensional convection-dominated problems, Journal of Scientific Computing, 43, 1, 24-43 (2010) · Zbl 1203.65261 · doi:10.1007/s10915-009-9337-6
[98] Linß, T.; Stynes, M., Numerical methods on shishkin meshes for linear convection- diffusion problems, Computer Methods in Applied Mechanics and Engineering, 190, 3527-3542 (2001) · Zbl 0988.76062
[99] Grossmann, C.; Roos, H.-G., Numerical Treatment of Partial Differential Equations. Numerical Treatment of Partial Differential Equations, Universitext (2007), Berlin, Germany: Springer, Berlin, Germany · Zbl 1180.65147 · doi:10.1007/978-3-540-71584-9
[100] Stynes, M.; Tobiska, L., The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy, SIAM Journal on Numerical Analysis, 41, 5, 1620-1642 (2003) · Zbl 1055.65121 · doi:10.1137/S0036142902404728
[101] Zhang, J.; Mei, L., Pointwise error estimates of the bilinear sdfem on shishkin meshes · Zbl 1264.65180
[102] Kopteva, N., How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers?, Computer Methods in Applied Mechanics and Engineering, 193, 45-47, 4875-4889 (2004) · Zbl 1112.76392 · doi:10.1016/j.cma.2004.05.008
[103] Franz, S.; Linß, T.; Roos, H.-G., Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers, Applied Numerical Mathematics, 58, 12, 1818-1829 (2008) · Zbl 1221.65292 · doi:10.1016/j.apnum.2007.11.005
[104] Lin, Q.; Lin, J., Finite Element Methods: Accuracy and Improvement. Finite Element Methods: Accuracy and Improvement, Mathematics Monograph Series (2006), Science Press
[105] Durán, R. G.; Lombardi, A. L.; Prieto, M. I., Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes, IMA Journal of Numerical Analysis, 32, 2, 511-533 (2012) · Zbl 1245.65157 · doi:10.1093/imanum/drr005
[106] Durán, R. G.; Lombardi, A. L.; Prieto, M. I., Supercloseness on graded meshes for \(Q_1\) finite element approximation of a reaction-diffusion equation, Journal of Computational and Applied Mathematics, 242, 232-242 (2013) · Zbl 1258.65097
[107] Zhu, G.; Chen, S., Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for singularly perturbed reaction-diffusion problems, Journal of Computational and Applied Mathematics, 234, 10, 3048-3063 (2010) · Zbl 1197.65172 · doi:10.1016/j.cam.2010.04.021
[108] Franz, S., Convergence phenomena for \(Q_p\)-elements for convection-diffusion problems, Numerical Methods for Partial Differential Equations, 29, 280-296 (2013) · Zbl 1255.65211
[109] Stynes, M.; Tobiska, L., Using rectangular \(Q_p\) elements in the SDFEM for a convection-diffusion problem with a boundary layer, Applied Numerical Mathematics, 58, 12, 1789-1802 (2008) · Zbl 1154.65083 · doi:10.1016/j.apnum.2007.11.004
[110] Franz, S., Superconvergence for pointwise interpolation in convection-diffusion problems · Zbl 1288.65155
[111] Franz, S.; Linß, T.; Roos, H.-G.; Schiller, S., Uniform superconvergence of a finite element method with edge stabilization for convection-diffusion problems, Journal of Computational Mathematics, 28, 1, 32-44 (2010) · Zbl 1224.65246 · doi:10.4208/jcm.2009.09-m1005
[112] Franz, S., Continuous interior penalty method on a Shishkin mesh for convection-diffusion problems with characteristic boundary layers, Computer Methods in Applied Mechanics and Engineering, 197, 45-48, 3679-3686 (2008) · Zbl 1194.76116 · doi:10.1016/j.cma.2008.02.019
[113] Matthies, G., Local projection stabilisation for higher order discretisations of convection-diffusion problems on Shishkin meshes, Advances in Computational Mathematics, 30, 4, 315-337 (2009) · Zbl 1165.65064 · doi:10.1007/s10444-008-9070-y
[114] Matthies, G., Local projection methods on layer-adapted meshes for higher order discretisations of convection-diffusion problems, Applied Numerical Mathematics, 59, 10, 2515-2533 (2009) · Zbl 1188.65154 · doi:10.1016/j.apnum.2009.05.008
[115] Franz, S.; Matthies, G., Local projection stabilisation on \(S\)-type meshes for convection-diffusion problems with characteristic layers, Computing, 87, 3-4, 135-167 (2010) · Zbl 1203.65226 · doi:10.1007/s00607-010-0079-y
[116] Roos, H.-G.; Zarin, H., A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes, Numerical Methods for Partial Differential Equations, 23, 6, 1560-1576 (2007) · Zbl 1145.65100 · doi:10.1002/num.20241
[117] Xie, Z.; Zhang, Z., Superconvergence of DG method for one-dimensional singularly perturbed problems, Journal of Computational Mathematics, 25, 2, 185-200 (2007) · Zbl 1142.65388
[118] Zhu, H.; Zhang, Z., Convergence analysis of the LDG method applied to singularly perturbed problems · Zbl 1267.65157
[119] Zhu, H.; Zhang, Z., Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer · Zbl 1282.65159
[120] Franz, S.; Tobiska, L.; Zarin, H., A new approach to recovery of discontinuous Galerkin, Journal of Computational Mathematics, 27, 6, 697-712 (2009) · Zbl 1212.65444 · doi:10.4208/jcm.2009.09-m2899
[121] Franz, S.; Liu, F.; Roos, H.-G.; Stynes, M.; Zhou, A., The combination technique for a two-dimensional convection-diffusion problem with exponential layers, Applications of Mathematics, 54, 3, 203-223 (2009) · Zbl 1212.65443 · doi:10.1007/s10492-009-0013-9
[122] Liu, F.; Madden, N.; Stynes, M.; Zhou, A., A two-scale sparse grid method for a singularly perturbed reaction-diffusion problem in two dimensions, IMA Journal of Numerical Analysis, 29, 4, 986-1007 (2009) · Zbl 1188.65153 · doi:10.1093/imanum/drn048
[123] Roos, H.-G.; Schopf, M., Convergence and stability in balanced norms of finite element methods on shishkin meshes for reaction-diffusion problems · Zbl 1326.65163
[124] Lin, R.; Stynes, M., A balanced finite element method for singularly perturbed reaction-diffusion problems, SIAM Journal on Numerical Analysis, 50, 2729-2743 (2012) · Zbl 1260.65103
[125] Franz, S.; Roos, H. G., Error estimation in a balanced norm for a convection- diffusion problem with two different boundary layers · Zbl 1314.65141
[126] Garcia-Archilla, B., Shishkin mesh simulation: a new stabilization technique for convection-diffusion problems · Zbl 1352.65500
[127] Andreev, V. B.; Kopteva, N., Pointwise approximation of corner singularities for a singularly perturbed reaction-diffusion equation in an \(L\)-shaped domain, Mathematics of Computation, 77, 264, 2125-2139 (2008) · Zbl 1198.65207 · doi:10.1090/S0025-5718-08-02106-6
[128] Andreev, V. B., Uniform grid approximation of nonsmooth solutions of a mixed boundary value problem for a singularly perturbed reaction-diffusion equation in a rectangle, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 48, 1, 90-114 (2008) · Zbl 1201.65148 · doi:10.1134/S0965542508010077
[129] Franz, S.; Kellogg, R. B.; Stynes, M., Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities, Mathematics of Computation, 81, 278, 661-685 (2012) · Zbl 1244.65173 · doi:10.1090/S0025-5718-2011-02526-3
[130] Franz, S.; Kellogg, R. B.; Stynes, M., On the choice of mesh for a singularly perturbed problem with a corner singularity, Proceedings of the Boundary and Interior Layers, Computational and Asymptotic Methods (BAIL ’10), Springer
[131] Roos, H. G.; Ludwig, L., Finite element superconvergence on shishkin meshes for convection-diffusion problems with corner singularities · Zbl 1293.65143
[132] Roos, H.-G.; Ludwig, L., Superconvergence for convection-diffusion problems with low regularity, Proceedings in Applied Mathematics and Mechanics, 173-187 (2012) · Zbl 1313.65292
[133] Andreev, V. B., Uniform grid approximation of nonsmooth solutions of a singularly perturbed convection-diffusion equation in a rectangle, Differentsial’nye Uravneniya, 45, 7, 954-964 (2009) · Zbl 1176.65119 · doi:10.1134/S0012266109070052
[134] Andreev, V. B., Pointwise approximation of corner singularities for singularly perturbed elliptic problems with characteristic layers, International Journal of Numerical Analysis and Modeling, 7, 3, 416-427 (2010) · Zbl 1201.65196
[135] Clavero, C.; Gracia, J. L.; Stynes, M., A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems, Journal of Computational and Applied Mathematics, 235, 17, 5240-5248 (2011) · Zbl 1225.65084 · doi:10.1016/j.cam.2011.05.025
[136] Kaland, L.; Roos, H.-G., Parabolic singularly perturbed problems with exponential layers: robust discretizations using finite elements in space on Shishkin meshes, International Journal of Numerical Analysis and Modeling, 7, 3, 593-606 (2010) · Zbl 1195.65121
[137] Dolejší, V.; Roos, H.-G., BDF-FEM for parabolic singularly perturbed problems with exponential layers on layers-adapted meshes in space, Neural, Parallel & Scientific Computations, 18, 2, 221-235 (2010) · Zbl 1208.65146
[138] Roos, H.-G.; Vlasak, M., An optimal uniform a priori error estimate for an un- steady singularly perturbed problem, International Journal of Numerical Analysis and Modeling Computing and Information, 9, 1, 56-72 (2012)
[139] Verfürth, R., Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM Journal on Numerical Analysis, 43, 4, 1766-1782 (2005) · Zbl 1099.65100 · doi:10.1137/040604261
[140] El Alaoui, L.; Ern, A.; Burman, E., A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection-diffusion equations, IMA Journal of Numerical Analysis, 27, 1, 151-171 (2007) · Zbl 1112.65109 · doi:10.1093/imanum/drl011
[141] Achchab, B.; El Fatini, M.; Ern, A.; Souissi, A., A posteriori error estimates for subgrid viscosity stabilized approximations of convection-diffusion equations, Applied Mathematics Letters, 22, 9, 1418-1424 (2009) · Zbl 1173.65350 · doi:10.1016/j.aml.2008.12.006
[142] Achchab, B.; El Fatini, M.; Souissi, A., A posteriori error analysis for multiscale stabilization of convection-diffusion-reaction problems: unsteady state, International Journal of Mathematics and Statistics, 4, S09, 3-11 (2009) · Zbl 1173.65350
[143] Apel, T.; Nicaise, S.; Sirch, D., A posteriori error estimation of residual type for anisotropic diffusion-convection-reaction problems, Journal of Computational and Applied Mathematics, 235, 8, 2805-2820 (2011) · Zbl 1210.65187 · doi:10.1016/j.cam.2010.11.032
[144] Achchab, B.; Agouzal, A.; El Fatini, M.; Souissi, A., Robust hierarchical a posteriori error estimators for stabilized convection-diffusion problems, Numerical Methods for Partial Differential Equations, 28, 5, 1717-1728 (2012) · Zbl 1254.65122
[145] Achchab, B.; Benjouad, A.; El Fatini, M.; Souissi, A.; Warnecke, G., Robust a posteriori error estimates for subgrid stabilization of non-stationary convection dominated diffusive transport, Applied Mathematics and Computation, 218, 9, 5276-5291 (2012) · Zbl 1244.65129 · doi:10.1016/j.amc.2011.11.012
[146] Cheddadi, I.; Fučík, R.; Prieto, M. I.; Vohralík, M., Guaranteed and robust a posteriori error estimates for singularly perturbed reaction-diffusion problems, Mathematical Modelling and Numerical Analysis, 43, 5, 867-888 (2009) · Zbl 1190.65164 · doi:10.1051/m2an/2009012
[147] Vohralík, M., A Posteriori Error Estimates for Efficiency and Error Control in Numerical Simulations. A Posteriori Error Estimates for Efficiency and Error Control in Numerical Simulations, Lecture Notes, 6 (2012), Paris, France: Université Pierre et Marie Curie, Paris, France
[148] Ainsworth, M.; Allendes, A.; Barrenechea, G. R.; Rankin, R., Fully Computable a Posteriori Error Bounds for Stabilized Fem Approximations of Convection-Diffusion-Reaction Problems in Three Dimensions, University of Strathclyde · Zbl 1455.65207
[149] Zhu, L.; Schötzau, D., A robust a posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations, IMA Journal of Numerical Analysis, 31, 3, 971-1005 (2011) · Zbl 1225.65104 · doi:10.1093/imanum/drp038
[150] Ern, A.; Stephansen, A. F.; Vohralík, M., Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, Journal of Computational and Applied Mathematics, 234, 1, 114-130 (2010) · Zbl 1190.65165 · doi:10.1016/j.cam.2009.12.009
[151] Kuzmin, D.; Korotov, S., Goal-oriented a posteriori error estimates for transport problems, Mathematics and Computers in Simulation, 80, 8, 1674-1683 (2010) · Zbl 1196.65172 · doi:10.1016/j.matcom.2009.03.008
[152] Dolejší, V.; Ern, A.; Vohralík, M., A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems · Zbl 1278.65138
[153] Linß, T., A posteriori error estimation for higher order fem applied to one-dimensional reaction-diffusion problems · Zbl 1340.65163
[154] Kopteva, N., Maximum norm a posteriori error estimate for a 2D singularly perturbed semilinear reaction-diffusion problem, SIAM Journal on Numerical Analysis, 46, 3, 1602-1618 (2008) · Zbl 1168.65062 · doi:10.1137/060677616
[155] Franz, S.; Kopteva, N., Green’s function estimates for a singularly perturbed convection-diffusion problem, Journal of Differential Equations, 252, 2, 1521-1545 (2012) · Zbl 1235.35087 · doi:10.1016/j.jde.2011.07.033
[156] Franz, S.; Kopteva, N., Green’s function estimates for a singularly perturbed convection-diffusion problem in three dimensions, International Journal of Numerical Analysis and Modeling B, 2, 2-3, 124-141 (2011) · Zbl 1246.35073
[157] Kopteva, N.; Linß, T., Maximum norm a posteriori error estimation for a time-dependent reaction-diffusion problem, Computational Methods in Applied Mathematics, 12, 189-205 (2012) · Zbl 1284.65120
[158] Richter, T., A posteriori error estimation and anisotropy detection with the dual-weighted residual method, International Journal for Numerical Methods in Fluids, 62, 1, 90-118 (2010) · Zbl 1192.65144 · doi:10.1002/fld.2016
[159] Huang, W.; Kamenski, L.; Lang, J., A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates, Journal of Computational Physics, 229, 6, 2179-2198 (2010) · Zbl 1185.65221 · doi:10.1016/j.jcp.2009.11.029
[160] Kunert, G., Toward anisotropic mesh construction and error estimation in the finite element method, Numerical Methods for Partial Differential Equations, 18, 5, 625-648 (2002) · Zbl 1041.65097 · doi:10.1002/num.10023
[161] Schneider, R., A review of anisotropic refinement methods for triangular meshes in FEM, Advanced Finite Element Methods and Applications. Advanced Finite Element Methods and Applications, Lecture Notes in Applied and Computational Mechanics, 66, 133-152 (2013), Heidelberg, Germany: Springer, Heidelberg, Germany · Zbl 1263.65124 · doi:10.1007/978-3-642-30316-6_6
[162] Linss, T.; Stynes, M., Numerical solution of systems of singularly perturbed differential equations, Computational Methods in Applied Mathematics, 9, 2, 165-191 (2009) · Zbl 1193.65189
[163] Linß, T.; Madden, N., Layer-adapted meshes for a linear system of coupled singularly perturbed reaction-diffusion problems, IMA Journal of Numerical Analysis, 29, 1, 109-125 (2009) · Zbl 1168.65046 · doi:10.1093/imanum/drm053
[164] Melenk, J. M.; Oberbroeckling, L.; Xenophontos, C., Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales: a road map · Zbl 1278.34064
[165] Linß, T., Analysis of an upwind finite-difference scheme for a system of coupled singularly perturbed convection-diffusion equations, Computing, 79, 1, 23-32 (2007) · Zbl 1115.65084 · doi:10.1007/s00607-006-0215-x
[166] Roos, H.-G.; Reibiger, C., Numerical analysis of a system of singularly perturbed convection-diffusion equations related to optimal control, Numerical Mathematics: Theory, Methods and Applications, 4, 4, 562-575 (2011) · Zbl 1265.65123 · doi:10.4208/nmtma.2011.m1101
[167] O’Riordan, E.; Stynes, M., Numerical analysis of a strongly coupled system of two singularly perturbed convection-diffusion problems, Advances in Computational Mathematics, 30, 2, 101-121 (2009) · Zbl 1167.65044 · doi:10.1007/s10444-007-9058-z
[168] Roos, H.-G.; Reibiger, C., Analysis of a strongly coupled system of two convection-diffusion equations with full layer interaction, Zeitschrift für Angewandte Mathematik und Mechanik, 91, 7, 537-543 (2011) · Zbl 1220.65101 · doi:10.1002/zamm.201000153
[169] Linss, T., Analysis of a system of singularly perturbed convection-diffusion equations with strong coupling, SIAM Journal on Numerical Analysis, 47, 3, 1847-1862 (2009) · Zbl 1193.65129 · doi:10.1137/070683970
[170] Roos, H.-G., Special features of strongly coupled systems of convection-diffusion equations with two small parameters, Applied Mathematics Letters, 25, 8, 1127-1130 (2012) · Zbl 1246.65124 · doi:10.1016/j.aml.2012.02.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.